Graph Neural Networks With Parallel Neighborhood Aggregations for Graph Classification

被引:4
|
作者
Doshi, Siddhant [1 ]
Chepuri, Sundeep Prabhakar [1 ]
机构
[1] Indian Inst Sci, Dept Elect Commun Engn, Bangalore 560012, Karnataka, India
关键词
Computational modeling; Task analysis; Numerical models; Training; Predictive models; Computer architecture; Brain modeling; Graph classification; graph filterbanks; graph neural networks; isomorphism test; representation learning;
D O I
10.1109/TSP.2022.3205476
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We focus on graph classification using a graph neural network (GNN) model that precomputes node features using a bank of neighborhood aggregation graph operators arranged in parallel. These GNN models have a natural advantage of reduced training and inference time due to the precomputations but are also fundamentally different from popular GNN variants that update node features through a sequential neighborhood aggregation procedure during training. We provide theoretical conditions under which a generic GNN model with parallel neighborhood aggregations (PA-GNNs, in short) are provably as powerful as the well-known Weisfeiler-Lehman (WL) graph isomorphism test in discriminating non-isomorphic graphs. Although PA-GNN models do not have an apparent relationship with the WL test, we show that the graph embeddings obtained from these two methods are injectively related. We then propose a specialized PA-GNN model, called simple and parallel graph isomorphism network (SPIN), which obeys the developed conditions. We demonstrate via numerical experiments that the developed model achieves state-of-the-art performance on many diverse real-world datasets while maintaining the discriminative power of the WL test and the computational advantage of preprocessing graphs before the training process.
引用
收藏
页码:4883 / 4896
页数:14
相关论文
共 50 条
  • [11] Polynomial-based graph convolutional neural networks for graph classification
    Luca Pasa
    Nicolò Navarin
    Alessandro Sperduti
    Machine Learning, 2022, 111 : 1205 - 1237
  • [12] Differentially Private Graph Neural Networks for Whole-Graph Classification
    Mueller, Tamara T.
    Paetzold, Johannes C.
    Prabhakar, Chinmay
    Usynin, Dmitrii
    Rueckert, Daniel
    Kaissis, Georgios
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7308 - 7318
  • [13] Two-Stage Training of Graph Neural Networks for Graph Classification
    Manh Tuan Do
    Noseong Park
    Kijung Shin
    Neural Processing Letters, 2023, 55 : 2799 - 2823
  • [14] Bipartite Graph Coarsening for Text Classification Using Graph Neural Networks
    dos Santos, Nicolas Roque
    Minatel, Diego
    Baria Valejo, Alan Demetrius
    Lopes, Alneu de A.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I, 2024, 14469 : 589 - 604
  • [15] Polynomial-based graph convolutional neural networks for graph classification
    Pasa, Luca
    Navarin, Nicolo
    Sperduti, Alessandro
    MACHINE LEARNING, 2022, 111 (04) : 1205 - 1237
  • [16] Graph alternate learning for robust graph neural networks in node classification
    Baoliang Zhang
    Xiaoxin Guo
    Zhenchuan Tu
    Jia Zhang
    Neural Computing and Applications, 2022, 34 : 8723 - 8735
  • [17] Two-Stage Training of Graph Neural Networks for Graph Classification
    Do, Manh Tuan
    Park, Noseong
    Shin, Kijung
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 2799 - 2823
  • [18] Revisiting Attention-Based Graph Neural Networks for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 442 - 458
  • [19] Graph alternate learning for robust graph neural networks in node classification
    Zhang, Baoliang
    Guo, Xiaoxin
    Tu, Zhenchuan
    Zhang, Jia
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (11): : 8723 - 8735
  • [20] Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph Convolutional Neural Networks
    Komanduri, Aneesh
    Zhan, Justin
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 903 - 908