ATP depletion induces translocation of STIM1 to puncta and formation of STIM1-ORAI1 clusters: translocation and re-translocation of STIM1 does not require ATP

被引:38
|
作者
Chvanov, Michael [1 ]
Walsh, Ciara M. [1 ]
Haynes, Lee P. [1 ]
Voronina, Svetlana G. [1 ]
Lur, Gyorgy [1 ]
Gerasimenko, Oleg V. [1 ]
Barraclough, Roger [2 ]
Rudland, Philip S. [2 ]
Petersen, Ole H. [1 ]
Burgoyne, Robert D. [1 ]
Tepikin, Alexei V. [1 ]
机构
[1] Univ Liverpool, Dept Physiol, Sch Biomed Sci, Liverpool L69 3BX, Merseyside, England
[2] Univ Liverpool, Mol Med Res Grp, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England
来源
基金
英国惠康基金; 英国医学研究理事会;
关键词
STIM1; ORAI1; ATP; Store-operated calcium influx; Ca2+ signals; ER calcium;
D O I
10.1007/s00424-008-0529-y
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Depletion of the endoplasmic reticulum (ER) calcium store triggers translocation of stromal interacting molecule one (STIM1) to the sub-plasmalemmal region and formation of puncta-structures in which STIM1 interacts and activates calcium channels. ATP depletion induced the formation of STIM1 puncta in PANC1, RAMA37, and HeLa cells. The sequence of events triggered by inhibition of ATP production included a rapid decline of ATP, depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P-2) and a slow calcium leak from the ER followed by formation of STIM1 puncta. STIM1 puncta induced by ATP depletion were co-localized with clusters of ORAI1 channels. STIM1-ORAI1 clusters that developed as a result of ATP depletion were very poor mediators of Ca2+ influx. Re-translocation of STIM1 from puncta back to the ER was observed during total ATP depletion. We can therefore conclude that STIM1 translocation and re-translocation as well as formation of STIM1-ORAI1 clusters occur in an ATP-independent fashion and under conditions of PI(4,5) P-2 depletion.
引用
收藏
页码:505 / 517
页数:13
相关论文
共 50 条
  • [31] Ribosome-free Terminals of Rough ER Allow Formation of STIM1 Puncta and Segregation of STIM1 from IP3 Receptors
    Lur, Gyorgy
    Haynes, Lee P.
    Prior, Ian A.
    Gerasimenko, Oleg V.
    Feske, Stefan
    Petersen, Ole H.
    Burgoyne, Robert D.
    Tepikin, Alexei V.
    CURRENT BIOLOGY, 2009, 19 (19) : 1648 - 1653
  • [32] STIM1 and Orai1:novel targets for vascular diseases?
    Mohamed TREBAK
    Science China(Life Sciences), 2011, 54 (08) : 780 - 785
  • [33] A Molecular Mechanism for Orai1 Channel Activation by STIM1
    Palty, Raz
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 132A - 132A
  • [34] STIM1 and Orai1: novel targets for vascular diseases?
    Zhang, Wei
    Trebak, Mohamed
    SCIENCE CHINA-LIFE SCIENCES, 2011, 54 (08) : 780 - 785
  • [35] TRPC channels function independently of STIM1 and Orai1
    DeHaven, Wayne I.
    Jones, Bertina F.
    Petranka, John G.
    Smyth, Jeremy T.
    Tomita, Takuro
    Bird, Gary S.
    Putney, James W., Jr.
    JOURNAL OF PHYSIOLOGY-LONDON, 2009, 587 (10): : 2275 - 2298
  • [36] STIM1 and Orai1: novel targets for vascular diseases?
    Wei Zhang
    Mohamed Trebak
    Science China Life Sciences, 2011, 54 : 780 - 785
  • [37] Molecular Determinants of the Coupling between STIM1 and Orai Channels DIFFERENTIAL ACTIVATION OF Orai1-3 CHANNELS BY A STIM1 COILED-COIL MUTANT
    Frischauf, Irene
    Muik, Martin
    Derler, Isabella
    Bergsmann, Judith
    Fahrner, Marc
    Schindl, Rainer
    Groschner, Klaus
    Romanin, Christoph
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (32) : 21696 - 21706
  • [38] STIM2 Induces Activated Conformation of STIM1 to Control Orai1 Function in ER-PM Junctions
    Subedi, Krishna Prasad
    Ong, Hwei Ling
    Son, Ga-Yeon
    Liu, Xibao
    Ambudkar, Indu Suresh
    CELL REPORTS, 2018, 23 (02): : 522 - 534
  • [39] STIM1 interacts with termini of Orai channels in a sequential manner
    Niu, Liling
    Wu, Fuyun
    Li, Kaili
    Li, Jing
    Zhang, Shenyuan L.
    Hu, Junjie
    Wang, Qian
    JOURNAL OF CELL SCIENCE, 2020, 133 (08)
  • [40] Molecular basis of allosteric Orai1 channel activation by STIM1
    Yeung, Priscilla See-Wai
    Yamashita, Megumi
    Prakriya, Murali
    JOURNAL OF PHYSIOLOGY-LONDON, 2020, 598 (09): : 1707 - 1723