Pre- and post-surgery brain tumor multimodal magnetic resonance imaging data optimized for large scale computational modelling

被引:7
|
作者
Aerts, Hannelore [1 ]
Colenbier, Nigel [1 ,2 ,3 ]
Almgren, Hannes [1 ,4 ,5 ]
Dhollander, Thijs [6 ]
Daparte, Javier Rasero [7 ]
Clauw, Kenzo [1 ]
Johri, Amogh [8 ]
Meier, Jil [9 ,10 ,11 ,12 ,13 ]
Palmer, Jessica [9 ,10 ,11 ,12 ,13 ]
Schirner, Michael [9 ,10 ,11 ,12 ,13 ,14 ,15 ]
Ritter, Petra [9 ,10 ,11 ,12 ,13 ,14 ,15 ]
Marinazzo, Daniele [1 ]
机构
[1] Univ Ghent, Dept Data Anal, Ghent, Belgium
[2] Katholieke Univ Leuven, Res Ctr Motor Control & Neuroplast, Leuven, Belgium
[3] IRCSS San Camillo Hosp, Venice, Italy
[4] Univ Calgary, Dept Clin Neurosci, Calgary, AB, Canada
[5] Univ Calgary, Hothckiss Brain Inst, Cumming Sch Med, Calgary, AB, Canada
[6] Murdoch Childrens Res Inst, MCRI Res Grp Dev Imaging, Melbourne, Australia
[7] Carnegie Mellon Univ, CoAx Lab, Pittsburgh, PA USA
[8] Indraprastha Inst Informat Technol, Delhi, India
[9] Charite Univ Med Berlin, Berlin Inst Hlth, Charite Pl 1, D-10117 Berlin, Germany
[10] Charite Univ Med Berlin, Charite Pl 1, D-10117 Berlin, Germany
[11] Free Univ Berlin, Charite Pl 1, D-10117 Berlin, Germany
[12] Humboldt Univ, Dept Neurol Expt Neurol, Charite Pl 1, D-10117 Berlin, Germany
[13] Bernstein Ctr Computat Neurosci, Berlin, Germany
[14] Einstein Ctr Neurosci Berlin, Charite Pl 1, D-10117 Berlin, Germany
[15] Einstein Ctr Digital Future, Wilhelmstr 67, D-10117 Berlin, Germany
基金
欧盟地平线“2020”;
关键词
SPHERICAL-DECONVOLUTION; ROBUST; REGISTRATION; MOVEMENT; IMAGES;
D O I
10.1038/s41597-022-01806-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a dataset of magnetic resonance imaging (MRI) data (T1, diffusion, BOLD) acquired in 25 brain tumor patients before the tumor resection surgery, and six months after the surgery, together with the tumor masks, and in 11 controls (recruited among the patients' caregivers). The dataset also contains behavioral and emotional scores obtained with standardized questionnaires. To simulate personalized computational models of the brain, we also provide structural connectivity matrices, necessary to perform whole-brain modelling with tools such as The Virtual Brain. In addition, we provide blood-oxygen-level-dependent imaging time series averaged across regions of interest for comparison with simulation results. An average resting state hemodynamic response function for each region of interest, as well as shape maps for each voxel, are also contributed.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Implementing large scale fast track diagnostics in a comprehensive cancer center, pre- and post-measurement data
    W. H. van Harten
    N. Goedbloed
    A. H. Boekhout
    S. Heintzbergen
    BMC Health Services Research, 18
  • [32] Implementing large scale fast track diagnostics in a comprehensive cancer center, pre- and post-measurement data
    van Harten, W. H.
    Goedbloed, N.
    Boekhout, A. H.
    Heintzbergen, S.
    BMC HEALTH SERVICES RESEARCH, 2018, 18
  • [33] Brain tumor recognition from multimodal magnetic resonance images using wavelet texture features and optimized artificial neural network
    Yadav, Ashwani Kumar
    Yadav, Vaishali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 72975 - 72996
  • [34] Review of Magnetic Resonance Imaging and Post-processing for the Brain Tumor-related Epilepsy Study
    George, Reuben
    Chow, Li Sze
    Lim, Kheng Seang
    Audrey, Christine
    Ramli, Norlisah
    Tan, Li-Kuo
    CURRENT MEDICAL IMAGING, 2024, 20
  • [35] Multimodal Magnetic Resonance Imaging Data Fusion Reveals Distinct Patterns of Abnormal Brain Structure and Function in Catatonia
    Hirjak, Dusan
    Rashidi, Mahmoud
    Kubera, Katharina M.
    Northoff, Georg
    Fritze, Stefan
    Schmitgen, Mike M.
    Sambataro, Fabio
    Calhoun, Vince D.
    Wolf, Robert C.
    SCHIZOPHRENIA BULLETIN, 2020, 46 (01) : 202 - 210
  • [36] Machine learning of large-scale multimodal brain imaging data reveals neural correlates of hand preference
    Chormai, Pattarawat
    Pu, Yi
    Hu, Haoyu
    Fisher, Simon E.
    Francks, Clyde
    Kong, Xiang-Zhen
    NEUROIMAGE, 2022, 262
  • [37] Magnetic resonance imaging subtraction vs. pre- and post-contrast 3D gradient recalled echo fat suppressed imaging for evaluation of the canine and feline brain
    Simon, Heather
    Hecht, Silke
    Fazio, Constance
    Sun, Xiaocun
    FRONTIERS IN VETERINARY SCIENCE, 2024, 11
  • [38] PRESURGICAL EVALUATION OF LANGUAGE USING FUNCTIONAL MAGNETIC RESONANCE IMAGING IN BRAIN TUMOR PATIENTS WITH PREVIOUS SURGERY
    Peck, Kyung K.
    Bradbury, Michelle
    Petrovich, Nicole
    Hou, Bob L.
    Ishill, Nicole
    Brennan, Cameron
    Tabar, Viviane
    Holodny, Andrei I.
    NEUROSURGERY, 2009, 64 (04) : 644 - 652
  • [39] SAFETY OF CARDIOVASCULAR MAGNETIC RESONANCE REGADENOSON STRESS IMAGING WITHOUT PRE- AND POST-TEST 12-LEAD ELECTROCARDIOGRAPHY
    Hall, M. E.
    Rushing, M.
    Kamimura, D.
    Howard, C.
    Miller, K.
    McMullan, M. R.
    Campbell, W. F.
    Guild, C. S.
    Winniford, M. D.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2017, 65 (02) : 622 - 622
  • [40] Pre- and post-magnetic resonance imaging of hips and knees for detecting osteonecrosis in children and adolescents undergoing hematopoietic cell transplantation
    Sue Kaste
    Ali Y. Suliman
    Ying Li
    Dinesh Keerthi
    Guolian Kang
    Brandon Triplett
    Ashok Srinivasan
    Bone Marrow Transplantation, 2020, 55 : 1837 - 1839