Partial synchronization in diffusively time-delay coupled oscillator networks

被引:23
|
作者
Steur, Erik [1 ,2 ]
Oguchi, Toshiki [3 ]
van Leeuwen, Cees [1 ]
Nijmeijer, Henk [2 ]
机构
[1] Katholieke Univ Leuven, Fac Psychol & Educ Sci, Res Grp Expt Psychol, Lab Perceptual Dynam, B-3000 Louvain, Belgium
[2] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[3] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Engn Mech, Hachioji, Tokyo 1920397, Japan
关键词
COMPLEX DYNAMICAL NETWORKS; NONLINEAR-SYSTEMS; INTERNAL SYMMETRY; SPIKING NEURONS; GAP-JUNCTIONS; STABILITY; CELLS; STABILIZATION; PASSIVITY; DESIGN;
D O I
10.1063/1.4771665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study networks of diffusively time-delay coupled oscillatory units and we show that networks with certain symmetries can exhibit a form of incomplete synchronization called partial synchronization. We present conditions for the existence and stability of partial synchronization modes in networks of oscillatory units that satisfy a semipassivity property and have convergent internal dynamics. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771665]
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Adaptive synchronization for dynamical networks of neutral type with time-delay
    Xu, Yuhua
    Xie, Chengrong
    Tong, Dongbing
    OPTIK, 2014, 125 (01): : 380 - 385
  • [42] Adaptive synchronization research on the uncertain complex networks with time-delay
    Luo Qun
    Wu Wei
    Li Li-Xiang
    Yang Yi-Xian
    Peng Hai-Peng
    ACTA PHYSICA SINICA, 2008, 57 (03) : 1529 - 1534
  • [43] Complete synchronization and generalized synchronization of one-way coupled time-delay systems
    Zhan, M
    Wang, XG
    Gong, XF
    Wei, GW
    Lai, CH
    PHYSICAL REVIEW E, 2003, 68 (03):
  • [44] Pinning lag synchronization of complex dynamical networks with known state time-delay and unknown channel time-delay
    Huilan Yang
    Lan Shu
    Shouming Zhong
    Nonlinear Dynamics, 2017, 89 : 1793 - 1802
  • [45] Pinning lag synchronization of complex dynamical networks with known state time-delay and unknown channel time-delay
    Yang, Huilan
    Shu, Lan
    Zhong, Shouming
    NONLINEAR DYNAMICS, 2017, 89 (03) : 1793 - 1802
  • [46] Identifiability of diffusively coupled linear networks with partial instrumentation
    Kivits, E. M. M.
    Van den Hof, Paul M. J.
    IFAC PAPERSONLINE, 2023, 56 (02): : 2395 - 2400
  • [47] Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity
    Srinivasan, K.
    Senthilkumar, D. V.
    Murali, K.
    Lakshmanan, M.
    Kurths, J.
    CHAOS, 2011, 21 (02)
  • [48] A constructional method for generalized synchronization of coupled time-delay chaotic systems
    Xiang, Hui-fen
    Li, Gao-ping
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1849 - 1853
  • [49] Synchronization threshold of a coupled n-dimensional time-delay system
    Poria, Swarup
    Poria, Anindita Tarai
    Chatterjee, Prasanta
    CHAOS SOLITONS & FRACTALS, 2009, 41 (03) : 1123 - 1124
  • [50] Leader-following synchronization of coupled time-delay neural networks via delayed impulsive control
    Li, Mingyue
    Li, Xiaodi
    Han, Xiuping
    Qiu, Jianlong
    NEUROCOMPUTING, 2019, 357 : 101 - 107