Impact of anthropogenic CO 2 on the next glacial cycle

被引:8
|
作者
Herrero, Carmen [1 ]
Garcia-Olivares, Antonio [1 ]
Pelegri, Josep L. [2 ]
机构
[1] CSIC, Inst Ciencies Mar, E-08003 Barcelona, Spain
[2] CSIC, Inst Ciencies Mar, LINCGlobal, E-08003 Barcelona, Spain
关键词
ICE CORE; CLIMATE;
D O I
10.1007/s10584-013-1012-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The model of Paillard and Parrenin (Earth Planet Sci Lett 227(3-4):263-271, 2004) has been recently optimized for the last eight glacial cycles, leading to two different relaxation models with model-data correlations between 0.8 and 0.9 (Garcia-Olivares and Herrero (Clim Dyn 1-25, 2012b)). These two models are here used to predict the effect of an anthropogenic CO (2) pulse on the evolution of atmospheric CO (2), global ice volume and Antarctic ice cover during the next 300 kyr. The initial atmospheric CO (2) condition is obtained after a critical data analysis that sets 1300 Gt as the most realistic carbon Ultimate Recoverable Resources (URR), with the help of a global compartmental model to determine the carbon transfer function to the atmosphere. The next 20 kyr will have an abnormally high greenhouse effect which, according to the CO (2) values, will lengthen the present interglacial by some 25 to 33 kyr. This is because the perturbation of the current interglacial will lead to a delay in the future advance of the ice sheet on the Antarctic shelf, causing that the relative maximum of boreal insolation found 65 kyr after present (AP) will not affect the developing glaciation. Instead, it will be the following insolation peak, about 110 kyr AP, which will find an appropriate climatic state to trigger the next deglaciation.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 50 条
  • [41] Impact of anthropogenic activities on water quality parameters of glacial lakes from Rodnei mountains, Romania
    Rosca, Oana Mare
    Dippong, Thomas
    Marian, Monica
    Mihali, Cristina
    Mihalescu, Lucia
    Hoaghia, Maria-Alexandra
    Jelea, Marian
    ENVIRONMENTAL RESEARCH, 2020, 182
  • [42] The great glacial cycle
    Forbes, WTM
    SCIENCE, 1931, 74 (1916) : 294 - 295
  • [43] The anthropogenic salt cycle
    Kaushal, Sujay S.
    Likens, Gene E.
    Mayer, Paul M.
    Shatkay, Ruth R.
    Shelton, Sydney A.
    Grant, Stanley B.
    Utz, Ryan M.
    Yaculak, Alexis M.
    Maas, Carly M.
    Reimer, Jenna E.
    Bhide, Shantanu V.
    Malin, Joseph T.
    Rippy, Megan A.
    NATURE REVIEWS EARTH & ENVIRONMENT, 2023, 4 (11) : 770 - 784
  • [44] Antarctic stratification and glacial CO2
    Daniel M. Sigman
    Edward A. Boyle
    Nature, 2001, 412 : 606 - 606
  • [45] Antarctic stratification and glacial CO2
    Ralph F. Keeling
    Martin Visbeck
    Nature, 2001, 412 : 605 - 606
  • [46] The anthropogenic salt cycle
    Sujay S. Kaushal
    Gene E. Likens
    Paul M. Mayer
    Ruth R. Shatkay
    Sydney A. Shelton
    Stanley B. Grant
    Ryan M. Utz
    Alexis M. Yaculak
    Carly M. Maas
    Jenna E. Reimer
    Shantanu V. Bhide
    Joseph T. Malin
    Megan A. Rippy
    Nature Reviews Earth & Environment, 2023, 4 : 770 - 784
  • [47] Impact of chemical absorption in a CO2-cofluid refrigeration cycle
    Mozurkewich, George
    Simoni, Luke D.
    Stadtherr, Mark A.
    Schneider, William F.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [48] Impact of ocean carbon system variability on the detection of temporal increases in anthropogenic CO2
    Levine, Naomi Marcil
    Doney, Scott C.
    Wanninkhof, Rik
    Lindsay, Keith
    Fung, Inez Y.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2008, 113 (C3)
  • [49] Reply to 'Anthropogenic CO2 emissions'
    Roger J. Francey
    Cathy M. Trudinger
    Marcel van der Schoot
    Rachel M. Law
    Paul B. Krummel
    Ray L. Langenfelds
    L. Paul Steele
    Colin E. Allison
    Ann R. Stavert
    Robert J. Andres
    Christian Rödenbeck
    Nature Climate Change, 2013, 3 (7) : 604 - 604
  • [50] Anthropogenic CO2 in the Atlantic Ocean
    Gruber, N
    GLOBAL BIOGEOCHEMICAL CYCLES, 1998, 12 (01) : 165 - 191