Networks on the edge of chaos: Global feedback control of turbulence in oscillator networks

被引:7
|
作者
Gil, Santiago [1 ]
Mikhailov, Alexander S. [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, Phys Chem Abt, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 02期
关键词
chaos; feedback; nonlinear control systems; nonlinear dynamical systems; random processes; synchronisation; turbulence; COMPLEX; SYNCHRONIZATION; MODELS;
D O I
10.1103/PhysRevE.79.026219
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random networks of coupled phase oscillators with phase shifts in the interaction functions are considered. In such systems, extensive chaos (turbulence) is observed in a wide range of parameters. We show that, by introducing global feedback, the turbulence can be suppressed and a transition to synchronous oscillations can be induced. Our attention is focused on the transition scenario and the properties of patterns, including intermittent turbulence, which are found at the edge of chaos. The emerging coherent patterns represent various self-organized active (sub)networks whose size and behavior can be controlled.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] In-phase synchronization in complex oscillator networks by adaptive delayed feedback control
    Novicenko, Viktor
    Ratas, Irmantas
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [22] Exploiting the attractor structure for chaos feedback control: The Duffing oscillator
    Alvarez-Ramirez, J
    Espinosa-Paredes, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (10): : 3661 - 3670
  • [23] Edge of chaos and genesis of turbulence
    Chian, Abraham C-L.
    Munoz, Pablo R.
    Rempel, Erico L.
    PHYSICAL REVIEW E, 2013, 88 (05):
  • [24] Global stability of feedback power control algorithms for cellular radio networks
    Shoarinejad, K
    Paganini, F
    Pottie, GJ
    Speyer, JL
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 610 - 615
  • [25] Control of spatiotemporal chaos in neuronal networks
    Lourenco, C
    Babloyantz, A
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (04) : 507 - 517
  • [26] DECENTRALIZED CONTROL OF CHAOS IN NONLINEAR NETWORKS
    OKETANI, N
    USHIO, T
    HIRAI, K
    PHYSICS LETTERS A, 1995, 198 (04) : 327 - 332
  • [28] Fisher Information at the Edge of Chaos in Random Boolean Networks
    Wang, X. Rosalind
    Lizier, Joseph T.
    Prokopenko, Mikhail
    ARTIFICIAL LIFE, 2011, 17 (04) : 315 - 329
  • [29] Bioinspired Cellular Nonlinear Networks working on the edge of chaos
    Slavova, Angela
    Ignatov, Ventsislav
    2022 11TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2022,
  • [30] Broad edge of chaos in strongly heterogeneous Boolean networks
    Lee, Deok-Sun
    Rieger, Heiko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (41)