Optical solitons to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity

被引:62
|
作者
Bulut, Hasan [1 ,2 ]
Sulaiman, Tukur Abdulkadir [1 ,3 ]
Baskonus, Haci Mehmet [4 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
[2] Final Int Univ, Dept Math Educ, Kyrenia, Cyprus
[3] Fed Univ, Dept Math, Dutse, Jigawa, Nigeria
[4] Munzur Univ, Dept Comp Engn, Tunceli, Turkey
来源
OPTIK | 2018年 / 163卷
关键词
ShGEEM; R-NLSE; Kerr law nonlinearity; Optical solitons; QUADRATIC-CUBIC NONLINEARITY; TIME-DEPENDENT COEFFICIENTS; TRAVELING-WAVE SOLUTIONS; POWER-LAW; GORDON EQUATION; DARK SOLITONS; BRIGHT; FIBERS; PERTURBATION;
D O I
10.1016/j.ijleo.2018.02.081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study uses the extended sinh-Gordon equation expansion method in constructing various optical soliton solutions to the resonant nonlinear Schrodinger equation with both spatio-temporal and inter-modal dispersions. Resonant nonlinear Schrodinger equation expresses the propagation dynamics of optical solitons and Madelung fluids. Dark, bright, combined dark-bright and singular optical solitons are successfully constructed. Under the choice of suitable values of parameters, the two-dimensional, three-dimensional and the contour graphs to some of the acquired results are plotted. The reported results may be useful in explaining the physical meaning of the studied model. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [31] Dark optical, singular solitons and conservation laws to the nonlinear Schrodinger's equation with spatio-temporal dispersion
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Yusuf, Abdullahi
    MODERN PHYSICS LETTERS B, 2017, 31 (14):
  • [32] Optical solitons of a high-order nonlinear Schrodinger equation involving nonlinear dispersions and Kerr effect
    Hosseini, K.
    Mirzazadeh, M.
    Baleanu, D.
    Salahshour, S.
    Akinyemi, L.
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (03)
  • [33] Dark-singular, Dark-bright and other optical solitons for conformable resonant nonlinear Schrodinger's equation incorporating Kerr law nonlinearity
    Javid, Ahmad
    Ali, Shahid
    Raza, Nauman
    Inc, Mustafa
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (06)
  • [34] Dark and singular optical solitons for the conformable space-time nonlinear Schrodinger equation with Kerr and power law nonlinearity
    Inc, Mustafa
    Yusuf, Abdullahi
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    OPTIK, 2018, 162 : 65 - 75
  • [35] New extended direct algebraic method for the resonant nonlinear Schrodinger equation with Kerr law nonlinearity
    Vahidi, Javad
    Zabihi, Ali
    Rezazadeh, Hadi
    Ansari, Reza
    OPTIK, 2021, 227
  • [36] Lax pair, Darboux transformation and rogue-periodic waves of a nonlinear Schrodinger-Hirota equation with the spatio-temporal dispersion and Kerr law nonlinearity in nonlinear optics
    Wei, Cheng-Cheng
    Tian, Bo
    Qu, Qi-Xing
    Chen, Su-Su
    Yang, Dan-Yu
    MODERN PHYSICS LETTERS B, 2021, 35 (31):
  • [37] Exact solitons to generalized resonant dispersive nonlinear Schrodinger's equation with power law nonlinearity
    Mirzazadeh, M.
    Ekici, Mehmet
    Zhou, Qin
    Biswas, Anjan
    OPTIK, 2017, 130 : 178 - 183
  • [38] Analytical study of Thirring optical solitons with parabolic law nonlinearity and spatio-temporal dispersion
    Qin Zhou
    Lan Liu
    Huijuan Zhang
    Chun Wei
    Jun Lu
    Hua Yu
    Anjan Biswas
    The European Physical Journal Plus, 130
  • [39] Analytical study of Thirring optical solitons with parabolic law nonlinearity and spatio-temporal dispersion
    Zhou, Qin
    Liu, Lan
    Zhang, Huijuan
    Wei, Chun
    Lu, Jun
    Yu, Hua
    Biswas, Anjan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (07):
  • [40] Exact traveling wave solutions for resonance nonlinear Schrodinger equation with intermodal dispersions and the Kerr law nonlinearity
    Srivastava, Hari M.
    Gunerhan, Hatira
    Ghanbari, Behzad
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7210 - 7221