Collective motion of ions in an ion trap for Fourier transform ion cyclotron resonance mass spectrometry

被引:20
|
作者
Naito, Y [1 ]
Inoue, M [1 ]
机构
[1] UNIV ELECTROCOMMUN, DEPT APPL PHYS & CHEM, CHOFU, TOKYO 182, JAPAN
关键词
collective motion; Coulomb interaction; frequency shift; FTMS; peak coalescence;
D O I
10.1016/S0168-1176(96)04467-9
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
When two kinds of ions with a very small mass difference are trapped at high density in the Fourier transform ion cyclotron resonance (FT-ICR) cell and are coherently rotating in their cyclotron orbits, collective motion of two ion packets takes place due to the Coulomb interaction and only one peak appears in the spectrum rather than two peaks at their own mass-to-charge ratios. The phenomenon is theoretically studied with a model of two charged particles orbiting in a plane perpendicular to a uniform magnetic field. This model shows that, while the center-of-mass is rotating in a circular orbit at a frequency corresponding to the weighted average of the two cyclotron resonance frequencies, the two particles are rotating around the center-of-mass with an oscillating radius. The potential between the two particles is calculated and the resonance condition which decouples the coupling motion is derived as a function of mass, number of charges, the orbital radius of the center-of-mass and the magnetic field strength. The condition is experimentally examined with CO+ (m/z = 27.9949) and C2H4+ (m/z = 28.0313) ions, varying the number of charges and the cyclotron radius, and an agreement with the theory is found. The collective motion of highly multiply charged heavy ions produced from biomolecules is also discussed.
引用
下载
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [21] Data processing in Fourier transform ion cyclotron resonance mass spectrometry
    Qi, Yulin
    O'Connor, Peter B.
    MASS SPECTROMETRY REVIEWS, 2014, 33 (05) : 333 - 352
  • [22] Characterization of Polyphosphoesters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
    Kaczorowska, Malgorzata A.
    Cooper, Helen J.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2009, 20 (12) : 2238 - 2247
  • [23] Fourier transform ion cyclotron resonance mass spectrometry for food authentication
    Marshall, AG
    Wu, ZG
    Rodgers, RP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U31 - U31
  • [24] Gated trapped ion mobility spectrometry coupled to fourier transform ion cyclotron resonance mass spectrometry
    Ridgeway, Mark E.
    Wolff, Jeremy J.
    Silveira, Joshua A.
    Lin, Cheng
    Costello, Catherine E.
    Park, Melvin A.
    INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY, 2016, 19 (2-3) : 77 - 85
  • [25] A 2-ELECTRODE ION-TRAP FOR FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY
    MARTO, JA
    MARSHALL, AG
    SCHWEIKHARD, L
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1994, 137 : 9 - 30
  • [27] C60 Secondary Ion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
    Smith, Donald F.
    Robinson, Errol W.
    Tolmachev, Aleksey V.
    Heeren, Ron M. A.
    Pasa-Tolic, Ljiljana
    ANALYTICAL CHEMISTRY, 2011, 83 (24) : 9552 - 9556
  • [28] ION OPTICS FOR FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY
    MARSHALL, AG
    GUAN, SH
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 363 (1-2): : 397 - 405
  • [29] Determination of ion magnetron radial distribution in Fourier transform ion cyclotron resonance mass spectrometry
    Guan, SH
    Huang, YL
    Xin, TP
    Marshall, AG
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 1996, 10 (14) : 1855 - 1859
  • [30] Determination of ion magnetron radial distribution in Fourier transform ion cyclotron resonance mass spectrometry
    Ctr. or Interdisc. Magnetic Reson., Natl. High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahasee, FL 23210, United States
    不详
    RAPID COMMUN. MASS SPECTROM., 14 (1855-1859):