Automatic Segmentation of Intracranial Hematoma and Volume Measurement

被引:14
|
作者
Liu, Boqiang [1 ]
Yuan, Qingwei [1 ]
Liu, Zhongguo [1 ]
Li, Xiaomei [1 ]
Yin, Xiaohong [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
关键词
D O I
10.1109/IEMBS.2008.4649381
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, a two-step segmentation method is developed for segmenting the hematoma area from brain CT images. The volume of hematoma area is calculated after the segmentation. During the second segmentation process, the method of two-dimensional entropy is introduced to separate hematoma. In using the method of two-dimensional entropy, most important is to find the optional threshold which can be achieved by an improved genetic algorithm (GA) i.e. hierarchical genetic algorithm (HGA). HGA is more efficient than simple GA in overcoming the shortcoming of standard GA in local optimal solution and low precision convergence. An experiment is designed to test the effectiveness of automatic segmentation. The results prove that the precision of automatic segmentation is better than artificial segmentation, and the clinical needs are met.
引用
收藏
页码:1214 / 1217
页数:4
相关论文
共 50 条
  • [21] Genus Zero Graph Segmentation: Estimation of Intracranial Volume
    Jensen, Rasmus R.
    Thorup, Signe S.
    Paulsen, Rasmus R.
    Darvann, Tron A.
    Hermann, Nuno V.
    Larsen, Per
    Kreiborg, Sven
    Larsen, Rasmus
    IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 290 - 298
  • [22] Genus zero graph segmentation: Estimation of intracranial volume
    Jensen, Rasmus R.
    Thorup, Signe S.
    Paulsen, Rasmus R.
    Darvann, Tron A.
    Hermann, Nuno V.
    Larsen, Per
    Kreiborg, Sven
    Larsen, Rasmus
    PATTERN RECOGNITION LETTERS, 2014, 49 : 259 - 263
  • [23] Precision and Speed at Your Fingertips: An Automated Intracranial Hematoma Volume Calculation
    Khademolhosseini, Sepehr
    Habibzadeh, Adrina
    Zoghi, Sina
    Taheri, Reza
    Niakan, Amin
    Khalili, Hosseinali
    WORLD NEUROSURGERY, 2024, 185 : E827 - E834
  • [24] Magnitude of Hematoma Volume Measurement Error in Intracerebral Hemorrhage
    Rodriguez-Luna, David
    Boyko, Matthew
    Subramaniam, Suresh
    Klourfeld, Evgenia
    Jo, Patricia
    Diederichs, Brendan J.
    Kosior, Jayme C.
    Dowlatshahi, Dar
    Aviv, Richard I.
    Molina, Carlos A.
    Hill, Michael D.
    Demchuk, Andrew M.
    STROKE, 2016, 47 (04) : 1124 - 1126
  • [25] Comparison of Common Methods for Precision Volume Measurement of Hematoma
    Chen, Minhong
    Li, Zhong
    Ding, Jianping
    Lu, Xingqi
    Cheng, Yinan
    Lin, Jiayun
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020 (2020)
  • [26] A multiresolution binary level set method and its application to intracranial hematoma segmentation
    Liao, Chun-Chih
    Xiao, Furen
    Wong, Jau-Min
    Chiang, I-Jen
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (06) : 423 - 430
  • [27] Practical methods for segmentation and calculation of brain volume and intracranial volume: a guide and comparison
    Harkey, Thomas
    Baker, David
    Hagen, John
    Scott, Hayden
    Palys, Viktoras
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2022, 12 (07) : 3748 - +
  • [28] Automatic Intracranial Space Segmentation for Computed Tomography Brain Images
    C. Adamson
    A. C. Da Costa
    R. Beare
    A. G. Wood
    Journal of Digital Imaging, 2013, 26 : 563 - 571
  • [29] Deep Network for the Automatic Segmentation and Quantification of Intracranial Hemorrhage on CT
    Xu, Jun
    Zhang, Rongguo
    Zhou, Zijian
    Wu, Chunxue
    Gong, Qiang
    Zhang, Huiling
    Wu, Shuang
    Wu, Gang
    Deng, Yufeng
    Xia, Chen
    Ma, Jun
    FRONTIERS IN NEUROSCIENCE, 2021, 14
  • [30] Automatic Intracranial Space Segmentation for Computed Tomography Brain Images
    Adamson, C.
    Da Costa, A. C.
    Beare, R.
    Wood, A. G.
    JOURNAL OF DIGITAL IMAGING, 2013, 26 (03) : 563 - 571