Automated identification of animal species in camera trap images

被引:140
|
作者
Yu, Xiaoyuan [1 ,2 ]
Wang, Jiangping [2 ]
Kays, Roland [3 ,4 ,5 ]
Jansen, Patrick A. [3 ,6 ]
Wang, Tianjiang [1 ]
Huang, Thomas [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] Univ Illinois, Beckman Inst, Urbana, IL USA
[3] Smithsonian Trop Res Inst, Balboa, Ancon Panama, Panama
[4] North Carolina Museum Nat Sci, Raleigh, NC USA
[5] N Carolina State Univ, Fisheries Wildlife & Conservat Program, Raleigh, NC 27695 USA
[6] Wageningen Univ, Dept Environm Sci, NL-6700 AP Wageningen, Netherlands
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Species identification; SIFT; cLBP; Feature learning; Max pooling; Weighted sparse coding;
D O I
10.1186/1687-5281-2013-52
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species identification method for wildlife pictures captured by remote camera traps. Our process starts with images that are cropped out of the background. We then use improved sparse coding spatial pyramid matching (ScSPM), which extracts dense SIFT descriptor and cell-structured LBP (cLBP) as the local features, that generates global feature via weighted sparse coding and max pooling using multi-scale pyramid kernel, and classifies the images by a linear support vector machine algorithm. Weighted sparse coding is used to enforce both sparsity and locality of encoding in feature space. We tested the method on a dataset with over 7,000 camera trap images of 18 species from two different field cites, and achieved an average classification accuracy of 82%. Our analysis demonstrates that the combination of SIFT and cLBP can serve as a useful technique for animal species recognition in real, complex scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna
    Alexandra Swanson
    Margaret Kosmala
    Chris Lintott
    Robert Simpson
    Arfon Smith
    Craig Packer
    Scientific Data, 2
  • [42] Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN
    Vecvanags, Alekss
    Aktas, Kadir
    Pavlovs, Ilja
    Avots, Egils
    Filipovs, Jevgenijs
    Brauns, Agris
    Done, Gundega
    Jakovels, Dainis
    Anbarjafari, Gholamreza
    ENTROPY, 2022, 24 (03)
  • [43] Improving the accessibility and transferability of machine learning algorithms for identification of animals in camera trap images: MLWIC2
    Tabak, Michael A.
    Norouzzadeh, Mohammad S.
    Wolfson, David W.
    Newton, Erica J.
    Boughton, Raoul K.
    Ivan, Jacob S.
    Odell, Eric A.
    Newkirk, Eric S.
    Conrey, Reesa Y.
    Stenglein, Jennifer
    Iannarilli, Fabiola
    Erb, John
    Brook, Ryan K.
    Davis, Amy J.
    Lewis, Jesse
    Walsh, Daniel P.
    Beasley, James C.
    VerCauteren, Kurt C.
    Clune, Jeff
    Miller, Ryan S.
    ECOLOGY AND EVOLUTION, 2020, 10 (19): : 10374 - 10383
  • [44] Automated Augmentation with Reinforcement Learning and GANs for Robust Identification of Traffic Signs using Front Camera Images
    Chowdhury, Sohini Roy
    Tornberg, Lars
    Halvfordsson, Robin
    Nordh, Jonatan
    Gustafsson, Adam Suhren
    Wall, Joel
    Westerberg, Mattias
    Wirehed, Adam
    Tilloy, Louis
    Hu, Zhanying
    Tan, Haoyuan
    Pan, Meng
    Sjoberg, Jonas
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 79 - 83
  • [45] Animal detections vary among commonly used camera trap models
    Driessen, Michael M.
    Jarman, Peter J.
    Troy, Shannon
    Callander, Sophia
    WILDLIFE RESEARCH, 2017, 44 (04) : 291 - 297
  • [46] Past, present and future approaches using computer vision for animal re-identification from camera trap data
    Schneider, Stefan
    Taylor, Graham W.
    Linquist, Stefan
    Kremer, Stefan C.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (04): : 461 - 470
  • [47] Script Identification of Camera-based Images
    Li, Linlin
    Tan, Chew Lim
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 70 - 73
  • [48] Ear identification based on surveillance camera images
    Hoogstrate, AJ
    Van den Heuvel, H
    Huyben, E
    SCIENCE & JUSTICE, 2001, 41 (03) : 167 - 172
  • [49] Camera identification from cropped and scaled images
    Goljan, Miroslav
    Fridrich, Jessica
    SECURITY, FORENSICS, STEGANOGRAPHY, AND WATERMARKING OF MULTIMEDIA CONTENTS X, 2008, 6819
  • [50] Automated species identification: why not?
    Gaston, KJ
    O'Neill, MA
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 359 (1444) : 655 - 667