Automated identification of animal species in camera trap images

被引:140
|
作者
Yu, Xiaoyuan [1 ,2 ]
Wang, Jiangping [2 ]
Kays, Roland [3 ,4 ,5 ]
Jansen, Patrick A. [3 ,6 ]
Wang, Tianjiang [1 ]
Huang, Thomas [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] Univ Illinois, Beckman Inst, Urbana, IL USA
[3] Smithsonian Trop Res Inst, Balboa, Ancon Panama, Panama
[4] North Carolina Museum Nat Sci, Raleigh, NC USA
[5] N Carolina State Univ, Fisheries Wildlife & Conservat Program, Raleigh, NC 27695 USA
[6] Wageningen Univ, Dept Environm Sci, NL-6700 AP Wageningen, Netherlands
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Species identification; SIFT; cLBP; Feature learning; Max pooling; Weighted sparse coding;
D O I
10.1186/1687-5281-2013-52
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Image sensors are increasingly being used in biodiversity monitoring, with each study generating many thousands or millions of pictures. Efficiently identifying the species captured by each image is a critical challenge for the advancement of this field. Here, we present an automated species identification method for wildlife pictures captured by remote camera traps. Our process starts with images that are cropped out of the background. We then use improved sparse coding spatial pyramid matching (ScSPM), which extracts dense SIFT descriptor and cell-structured LBP (cLBP) as the local features, that generates global feature via weighted sparse coding and max pooling using multi-scale pyramid kernel, and classifies the images by a linear support vector machine algorithm. Weighted sparse coding is used to enforce both sparsity and locality of encoding in feature space. We tested the method on a dataset with over 7,000 camera trap images of 18 species from two different field cites, and achieved an average classification accuracy of 82%. Our analysis demonstrates that the combination of SIFT and cLBP can serve as a useful technique for animal species recognition in real, complex scenarios.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Automated identification of animal species in camera trap images
    Xiaoyuan Yu
    Jiangping Wang
    Roland Kays
    Patrick A Jansen
    Tianjiang Wang
    Thomas Huang
    EURASIP Journal on Image and Video Processing, 2013
  • [2] BatNet: a deep learning-based tool for automated bat species identification from camera trap images
    Krivek, Gabriella
    Gillert, Alexander
    Harder, Martin
    Fritze, Marcus
    Frankowski, Karina
    Timm, Luisa
    Meyer-Olbersleben, Liska
    von Lukas, Uwe Freiherr
    Kerth, Gerald
    van Schaik, Jaap
    REMOTE SENSING IN ECOLOGY AND CONSERVATION, 2023, 9 (06) : 759 - 774
  • [3] Machine learning to classify animal species in camera trap images: Applications in ecology
    Tabak, Michael A.
    Norouzzadeh, Mohammad S.
    Wolfson, David W.
    Sweeney, Steven J.
    Vercauteren, Kurt C.
    Snow, Nathan P.
    Halseth, Joseph M.
    Di Salvo, Paul A.
    Lewis, Jesse S.
    White, Michael D.
    Teton, Ben
    Beasley, James C.
    Schlichting, Peter E.
    Boughton, Raoul K.
    Wight, Bethany
    Newkirk, Eric S.
    Ivan, Jacob S.
    Odell, Eric A.
    Brook, Ryan K.
    Lukacs, Paul M.
    Moeller, Anna K.
    Mandeville, Elizabeth G.
    Clune, Jeff
    Miller, Ryan S.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (04): : 585 - 590
  • [4] Identifying animal species in camera trap images using deep learning and citizen science
    Willi, Marco
    Pitman, Ross T.
    Cardoso, Anabelle W.
    Locke, Christina
    Swanson, Alexandra
    Boyer, Amy
    Veldthuis, Marten
    Fortson, Lucy
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (01): : 80 - 91
  • [5] A deep active learning system for species identification and counting in camera trap images
    Norouzzadeh, Mohammad Sadegh
    Morris, Dan
    Beery, Sara
    Joshi, Neel
    Jojic, Nebojsa
    Clune, Jeff
    METHODS IN ECOLOGY AND EVOLUTION, 2021, 12 (01): : 150 - 161
  • [6] Towards automatic wild animal monitoring: Identification of animal species in camera-trap images using very deep convolutional neural networks
    Gomez Villa, Alexander
    Salazar, Augusto
    Vargas, Francisco
    ECOLOGICAL INFORMATICS, 2017, 41 : 24 - 32
  • [7] Human-Animal Recognition in Camera Trap Images
    Simsek, Emrah
    Ozyer, Baris
    Bayindir, Levent
    Ozyer, Gulsah Tumuklu
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [8] Animal Species Recognition with Deep Convolutional Neural Networks from Ecological Camera Trap Images
    Islam, Sazida Binta
    Valles, Damian
    Hibbitts, Toby J.
    Ryberg, Wade A.
    Walkup, Danielle K.
    Forstner, Michael R. J.
    ANIMALS, 2023, 13 (09):
  • [9] AnimalFinder: A semi-automated system for animal detection in time-lapse camera trap images
    Tack, Jennifer L. Price
    West, Brian S.
    McGowan, Conor P.
    Ditchkoff, Stephen S.
    Reeves, Stanley J.
    Keever, Allison C.
    Grand, James B.
    ECOLOGICAL INFORMATICS, 2016, 36 : 145 - 151
  • [10] Automated location invariant animal detection in camera trap images using publicly available data sources
    Shepley, Andrew
    Falzon, Greg
    Meek, Paul
    Kwan, Paul
    ECOLOGY AND EVOLUTION, 2021, 11 (09): : 4494 - 4506