UniNovo: a universal tool for de novo peptide sequencing

被引:61
|
作者
Jeong, Kyowon [1 ]
Kim, Sangtae [2 ]
Pevzner, Pavel A. [2 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA
[2] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92093 USA
关键词
TANDEM MASS-SPECTROMETER; PROTEIN IDENTIFICATION; LOW-ENERGY; DATABASE; SPECTRA; DISSOCIATION; ETD; PROBABILITY; SEARCH; MS/MS;
D O I
10.1093/bioinformatics/btt338
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but de novo peptide sequencing algorithms to analyze tandem mass (MS/MS) spectra are lagging behind. Although existing de novo sequencing tools perform well on certain types of spectra [e.g. Collision Induced Dissociation (CID) spectra of tryptic peptides], their performance often deteriorates on other types of spectra, such as Electron Transfer Dissociation (ETD), Higher-energy Collisional Dissociation (HCD) spectra or spectra of non-tryptic digests. Thus, rather than developing a new algorithm for each type of spectra, we develop a universal de novo sequencing algorithm called UniNovo that works well for all types of spectra or even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an improved scoring function that captures the dependences between different ion types, where such dependencies are learned automatically using a modified offset frequency function. Results: The performance of UniNovo is compared with PepNovo+, PEAKS and pNovo using various types of spectra. The results show that the performance of UniNovo is superior to other tools for ETD spectra and superior or comparable with others for CID and HCD spectra. UniNovo also estimates the probability that each reported reconstruction is correct, using simple statistics that are readily obtained from a small training dataset. We demonstrate that the estimation is accurate for all tested types of spectra (including CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN digested peptides).
引用
下载
收藏
页码:1953 / 1962
页数:10
相关论文
共 50 条
  • [21] Tandem mass intensity estimation for de novo peptide sequencing
    Loukil, Hatem
    2018 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2018, : 91 - 96
  • [22] Dimethyl Isotope Labeling Assisted De Novo Peptide Sequencing
    Hennrich, Marco L.
    Mohammed, Shabaz
    Altelaar, A. F. Maarten
    Heck, Albert J. R.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (12) : 1957 - 1965
  • [23] Peptide de novo sequencing of mixture tandem mass spectra
    Gorshkov, Vladimir
    Hotta, Stephanie Yuki Kolbeck
    Verano-Braga, Thiago
    Kjeldsen, Frank
    PROTEOMICS, 2016, 16 (18) : 2470 - 2479
  • [24] An Approach for Peptide Identification by De Novo Sequencing of Mixture Spectra
    Liu, Yi
    Ma, Bin
    Zhang, Kaizhong
    Lajoie, Gilles
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2017, 14 (02) : 326 - 336
  • [25] De novo peptide sequencing via tandem mass spectrometry
    Dancík, V
    Addona, TA
    Clauser, KR
    Vath, JE
    Pevzner, PA
    JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 327 - 342
  • [26] De novo peptide sequencing and identification with precision mass spectrometry
    Frank, Ari M.
    Savitski, Mikhail M.
    Nielsen, Michael L.
    Zubarev, Roman A.
    Pevzner, Pavel A.
    JOURNAL OF PROTEOME RESEARCH, 2007, 6 (01) : 114 - 123
  • [27] SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis
    Li, Chuang
    Li, Kenli
    Li, Keqin
    Xie, Xianghui
    Lin, Feng
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2019, 15 (09): : 1787 - 1801
  • [28] NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing
    Zhang, Shen
    Shan, Yichu
    Zhang, Shurong
    Sui, Zhigang
    Zhang, Lihua
    Liang, Zhen
    Zhang, Yukui
    JOURNAL OF PROTEOMICS, 2017, 154 : 40 - 48
  • [29] De novo peptide sequencing using CID and HCD spectra pairs
    Yan, Yan
    Kusalik, Anthony J.
    Wu, Fang-Xiang
    PROTEOMICS, 2016, 16 (20) : 2615 - 2624
  • [30] PepNovo: De novo peptide sequencing via probabilistic network modeling
    Frank, A
    Pevzner, P
    ANALYTICAL CHEMISTRY, 2005, 77 (04) : 964 - 973