Finite stopping time problems and rheometry of Bingham fluids

被引:35
|
作者
Huilgol, RR
Mena, B
Piau, JM
机构
[1] Flinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, Australia
[2] Natl Autonomous Univ Mexico, Inst Invest Mat, Mexico City 04510, DF, Mexico
[3] Lab Rheol, F-38041 Grenoble, France
关键词
bingham fluid; rheometry; variational inequality; finite stopping time;
D O I
10.1016/S0377-0257(01)00166-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown that steady channel, simple shear and Couette flows of a Bingham fluid come to rest in a finite amount of time, if either the applied pressure falls below a critical value, or the moving boundaries are brought to rest. An explicit formula for a bound on the finite stopping time in each case is derived. This bound depends on the density, the viscosity, the yield stress, a new geometric constant, and the least eigenvalue of the second order linear differential operator for the interval under consideration. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 107
页数:11
相关论文
共 50 条
  • [31] An inverse problem for Bingham type fluids
    Zhao, Jing
    He, Jiahong
    Migorski, Stanislaw
    Dudek, Sylwia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [32] Flow of Bingham fluids in an orthogonal rheometer
    Al Khatib, MAM
    Wilson, SDR
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (06) : 621 - 632
  • [33] Starting flow analysis for Bingham fluids
    Bostan, M
    Hild, P
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1119 - 1139
  • [34] Finite difference approximation for stochastic optimal stopping problems with delays
    Chang, Mou-Hsiung
    Pang, Tao
    Pemy, Moustapha
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (02) : 227 - 246
  • [35] ENTRY AND EXIT FLOWS OF BINGHAM FLUIDS
    ABDALI, SS
    MITSOULIS, E
    MARKATOS, NC
    JOURNAL OF RHEOLOGY, 1992, 36 (02) : 389 - 407
  • [36] FLOW OF BINGHAM FLUIDS IN COMPLEX GEOMETRIES
    LIPSCOMB, GG
    DENN, MM
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1984, 14 : 337 - 346
  • [37] THE FALLING OF SPHERES THROUGH BINGHAM FLUIDS
    BRISCOE, BJ
    GLAESE, M
    LUCKHAM, PF
    REN, S
    COLLOIDS AND SURFACES, 1992, 65 (01): : 69 - 75
  • [38] MODELING NEWTONIAN FLUIDS AND BINGHAM PLASTICS
    MANSFIELD, CF
    JOURNAL OF GEOLOGICAL EDUCATION, 1985, 33 (02) : 97 - 100
  • [39] ANALYSIS FOR THE CALENDERING OF BINGHAM PLASTIC FLUIDS
    CHUNG, TS
    JOURNAL OF APPLIED POLYMER SCIENCE, 1980, 25 (05) : 967 - 970
  • [40] Prophet inequalities for finite stage multiparameter optimal stopping problems
    Tanaka, Teruo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 764 - 773