Structural phase transitions and electrical properties of (KxNa1-x)NbO3-based ceramics modified with Mn

被引:54
|
作者
Mgbemere, Henry E. [1 ]
Hinterstein, Manuel [2 ]
Schneider, Gerold A. [1 ]
机构
[1] Hamburg Univ Technol, Inst Adv Ceram, D-21073 Hamburg, Germany
[2] Tech Univ Dresden, Inst Werkstoffwissensch, D-01069 Dresden, Germany
关键词
Powders-solid state reaction; X-ray methods; Ferroelectric properties; Perovskites; Actuators; PIEZOELECTRIC PROPERTIES; FERROELECTRIC PROPERTIES; CRYSTAL-STRUCTURE; DIELECTRIC-PROPERTIES; MICROSTRUCTURE; LI;
D O I
10.1016/j.jeurceramsoc.2012.07.033
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
(K0.5Na0.5)NbO3 (KNN) ceramics and KNN containing Li, Ta modified with 2 mol% of manganese have been produced using the mixed-oxide ceramics synthesis route. The structure and properties of these piezoelectric ceramics modified with manganese have been investigated using high resolution X-ray diffraction and electrical characterisation. The structural information about the ceramics was determined by Rietveld refinement with Fullprof. The phase transition temperatures observed with X-ray diffraction compares well with the values from dielectric studies. The addition of Mn slightly reduced the phase transition temperatures and for the sample containing only Li, the phase changed from orthorhombic to monoclinic phase with space group Pm. The dielectric, piezoelectric and ferroelectric properties of the samples decreased with Mn addition due to hard doping effects resulting from oxygen vacancies in the perovskite lattice. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4341 / 4352
页数:12
相关论文
共 50 条
  • [41] Extremely temperature-stable piezoelectric properties of orthorhombic phase in (K, Na)NbO3-based ceramics
    Gao, Y.
    Zhang, J. L.
    Zong, X. J.
    Wang, C. L.
    Li, J. C.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (07)
  • [42] The influence of electrical field on (K,Na)NbO3-based ceramics over polymorphic phase transition composition region
    Zhao, Yongjie
    Liu, Jialin
    Yan, Dong
    Zhou, Heping
    Zhang, Xiaowen
    CERAMICS INTERNATIONAL, 2019, 45 (16) : 21044 - 21047
  • [43] Normal sintering of (K,Na)NbO3-based ceramics:: Influence of sintering temperature on densification, microstructure, and electrical properties
    Zhen, Yuhua
    Li, Jing-Feng
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (12) : 3669 - 3675
  • [44] Optical and electrical properties of pressureless sintered transparent (K0.37Na0.63)NbO3-based ceramics
    Yang, Dong
    Ma, Chao
    Yang, Zupei
    Wei, Lingling
    Chao, Xiaolian
    Yang, Zhenyu
    Yang, Jinglun
    CERAMICS INTERNATIONAL, 2016, 42 (04) : 4648 - 4657
  • [45] Tailoring electrical properties of (Na1/2K1/2)NbO3-based lead-free piezoelectric ceramics
    Fang, Bijun
    Jiang, Na
    Ding, Jianning
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2012, 209 (07): : 1239 - 1244
  • [46] Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics
    Yin, Baoyi
    Huan, Yu
    Wang, Zhenxing
    Lin, Xiujuan
    Huang, Shifeng
    Wei, Tao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (20) : 18659 - 18665
  • [47] (KxNa1-x)0.94Li0.06NbO3陶瓷的相变特性和压电性能
    钮效鹍
    郑增艳
    石家庄学院学报, 2009, 11 (03) : 13 - 15
  • [48] Enhanced thermal reliability of Mn-doped (K, Na)NbO3-based piezoelectric ceramics
    Baoyi Yin
    Yu Huan
    Zhenxing Wang
    Xiujuan Lin
    Shifeng Huang
    Tao Wei
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 18659 - 18665
  • [49] Systematic study of the influence of the K/Na ratio on the structure, microstructure, and electrical properties of (KxNa1−x)NbO3 lead-free ceramics
    Le Tran Uyen Tu
    Phan Dinh Gio
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [50] Photoluminescence and electrical properties of Er-doped (K0.5Na0.5)NbO3-based transparent ceramics
    Jiangting Wang
    Shaoyang Shi
    Xiang Liu
    Huangtao Wu
    Hua Wang
    Jiwen Xu
    Ling Yang
    Wei Qiu
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 19551 - 19562