Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry

被引:22
|
作者
Fredriksson, Ingemar [1 ,2 ]
Hultman, Martin [1 ]
Stromberg, Tomas [1 ]
Larsson, Marcus [1 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, Linkoping, Sweden
[2] Perimed AB, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
blood flow; microcirculation; laser speckle contrast analysis; artificial neural networks; SIZE;
D O I
10.1117/1.JBO.24.1.016001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Laser speckle contrast imaging (LSCI) enables video rate imaging of blood flow. However, its relation to tissue blood perfusion is nonlinear and depends strongly on exposure time. By contrast, the perfusion estimate from the slower laser Doppler flowmetry (LDF) technique has a relationship to blood perfusion that is better understood. Multiexposure LSCI (MELSCI) enables a perfusion estimate closer to the actual perfusion than that using a single exposure time. We present and evaluate a method that utilizes contrasts from seven exposure times between 1 and 64 ms to calculate a perfusion estimate that resembles the perfusion estimate from LDF. The method is based on artificial neural networks (ANN) for fast and accurate processing of MELSCI contrasts to perfusion. The networks are trained using modeling of Doppler histograms and speckle contrasts from tissue models. The importance of accounting for noise is demonstrated. Results show that by using ANN, MELSCI data can be processed to LDF perfusion with high accuracy, with a correlation coefficient R = 1.000 for noise-free data, R = 0.993 when a moderate degree of noise is present, and R = 0.995 for in vivo data from an occlusion-release experiment. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Noise analysis in laser speckle contrast imaging
    Yuan, Shuai
    Chen, Yu
    Dunn, Andrew K.
    Boas, David A.
    DYNAMICS AND FLUCTUATIONS IN BIOMEDICAL PHOTONICS VII, 2010, 7563
  • [32] Laser speckle contrast imaging of Raynaud phenomenon
    Hellmann, Marcin
    Cracowski, Jean-Luc
    POLSKIE ARCHIWUM MEDYCYNY WEWNETRZNEJ-POLISH ARCHIVES OF INTERNAL MEDICINE, 2014, 124 (09): : 483 - 484
  • [33] Correction of overexposure in laser speckle contrast imaging
    Foldesy, Peter
    Siket, Mate
    Nagy, Adam
    Janoki, Imre
    OPTICS EXPRESS, 2022, 30 (12) : 21523 - 21534
  • [34] Laser speckle contrast imaging, an alternative to laser doppler imaging in clinical practice of burn wound care derivation of a color code
    Dijkstra, Annemieke
    Guven, Goksel
    van Baar, Margriet E.
    Trommel, Nicole
    Hofland, Helma W. C.
    Kuijper, T. Martijn
    Ince, Can
    Van der Vlies, C. H.
    BURNS, 2023, 49 (08) : 1907 - 1915
  • [35] A Miniaturized Platform for Laser Speckle Contrast Imaging
    Senarathna, Janaka
    Murari, Kartikeya
    Etienne-Cummings, Ralph
    Thakor, Nitish V.
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2012, 6 (05) : 437 - 445
  • [36] Optimizing the precision of laser speckle contrast imaging
    Alberto González Olmos
    Sharvari Zilpelwar
    Smrithi Sunil
    David A. Boas
    Dmitry D. Postnov
    Scientific Reports, 13
  • [37] Laser speckle contrast imaging of hepatic microcirculation
    Zhukov, Oleg
    Postnov, Dmitry d.
    Hejn, Kamilla h.
    Ravnskjaer, Kim
    Sosnovtseva, Olga
    BIOMEDICAL OPTICS EXPRESS, 2025, 16 (04): : 1299 - 1309
  • [38] Laser speckle contrast imaging in biomedical optics
    Boas, David A.
    Dunn, Andrew K.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (01)
  • [39] Optimizing the precision of laser speckle contrast imaging
    Olmos, Alberto Gonzalez
    Zilpelwar, Sharvari
    Sunil, Smrithi
    Boas, David A.
    Postnov, Dmitry D.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [40] Laser speckle contrast imaging to assess microcirculation
    Hellmann, Marcin
    Kalinowski, Leszek
    Cracowski, Jean-Luc
    CARDIOLOGY JOURNAL, 2022, 29 (06) : 1028 - 1030