Weak Solutions for a Sixth Order Cahn-Hilliard Type Equation with Degenerate Mobility

被引:2
|
作者
Liu, Aibo [1 ]
Liu, Changchun [1 ]
机构
[1] Jilin Univ, Dept Math, Changchun 130012, Peoples R China
关键词
D O I
10.1155/2014/407265
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an initial-boundary problem for a sixth order Cahn-Hilliard type equation, which arises in oil-water-surfactant mixtures. An existence result for the problem with a concentration dependent diffusional mobility in three space dimensions is presented.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [41] Regularity of solutions of the Cahn-Hilliard equation with concentration dependent mobility
    Yin, JX
    Liu, CC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (05) : 543 - 554
  • [42] A SIXTH ORDER CAHN-HILLIARD TYPE EQUATION ARISING IN OIL-WATER-SURFACTANT MIXTURES
    Pawlow, Irena
    Zajaczkowski, Wojciech M.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (06) : 1823 - 1847
  • [43] Optimal control problem for a generalized sixth order Cahn-Hilliard type equation with nonlinear diffusion
    Shi, Gongcao
    Liu, Changchun
    Wang, Zhao
    BOUNDARY VALUE PROBLEMS, 2015,
  • [44] Optimal control problem for a generalized sixth order Cahn-Hilliard type equation with nonlinear diffusion
    Gongcao Shi
    Changchun Liu
    Zhao Wang
    Boundary Value Problems, 2015
  • [45] Stationary solutions for the Cahn-Hilliard equation
    Wei, JC
    Winter, M
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04): : 459 - 492
  • [46] Convergence of solutions to Cahn-Hilliard equation
    Rybka, P
    Hoffmann, KH
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) : 1055 - 1077
  • [47] Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility
    Frigeri, Sergio
    Gal, Ciprian G.
    Grasselli, Maurizio
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 287 : 295 - 328
  • [48] COARSENING MECHANISM FOR SYSTEMS GOVERNED BY THE CAHN-HILLIARD EQUATION WITH DEGENERATE DIFFUSION MOBILITY
    Dai, Shibin
    Du, Qiang
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1870 - 1889
  • [49] From Vlasov Equation to Degenerate Nonlocal Cahn-Hilliard Equation
    Charles Elbar
    Marco Mason
    Benoît Perthame
    Jakub Skrzeczkowski
    Communications in Mathematical Physics, 2023, 401 : 1033 - 1057