Oscillations of two-dimensional nonlinear partial difference systems

被引:0
|
作者
Liu, ST [1 ]
Chen, GR
机构
[1] Shandong Univ, Coll Control Sci & Engn, Jinan 250061, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
nonlinear partial difference systems; oscillation; delay partial differential equations; asymptotic behavior;
D O I
10.1016/S0898-1221(04)90050-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the following nonlinear two-dimensional partial difference system: Delta(1)(x(mn)) - b(mng)(y(mn)) = 0, T(Delta(1), Delta(2)) (y(mn)) + a(mn)f(x(mn)) = 0, where m, n is an element of N-i = {i, i + 1,...}, i is a nonnegative integer, T(Delta(1), Delta(2)) = Delta(1) + Delta(2) + I, Delta(1ymn) = y(m+1,n) - y(mn), Delta(2ymn) = y(mn,n+1) - y(mn), I(mn)y(mn) = y(mn), {a(mn)} and {b(mn)} are real sequences, m, n is an element of N-0, and f, g : R --> R are continuous with uf(u) > 0 and ug(u) > 0 for all u not equal 0. A solution ({x(mn)), {y(mn)) of this system is oscillatory if both components are oscillatory. Some sufficient conditions are derived for all solutions of this system to be oscillatory. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:621 / 629
页数:9
相关论文
共 50 条
  • [21] PLASMA-OSCILLATIONS IN MULTICOMPONENT TWO-DIMENSIONAL SYSTEMS
    VITLINA, RZ
    CHAPLIK, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1981, 81 (03): : 1011 - 1021
  • [22] Anomalous magneto-oscillations in two-dimensional systems
    Winkler, R
    Papadakis, SJ
    De Poortere, EP
    Shayegan, M
    PHYSICAL REVIEW LETTERS, 2000, 84 (04) : 713 - 716
  • [23] On self-localization of oscillations in two-dimensional nonlinear gratings
    Sukhorukov, AP
    Churilova, AV
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1996, 60 (12): : 80 - 87
  • [24] Nonlinear Magnetoresistance Oscillations in Intensely Irradiated Two-Dimensional Electron Systems Induced by Multiphoton Processes
    Khodas, M.
    Chiang, H. -S.
    Hatke, A. T.
    Zudov, M. A.
    Vavilov, M. G.
    Pfeiffer, L. N.
    West, K. W.
    PHYSICAL REVIEW LETTERS, 2010, 104 (20)
  • [25] On the oscillation of nonlinear two-dimensional differential systems
    Kordonis, IGE
    Philos, CG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) : 1661 - 1667
  • [26] On solvability of a two-dimensional symmetric nonlinear system of difference equations
    Stevic, Stevo
    Iricanin, Bratislav
    Kosmala, Witold
    Smarda, Zdenek
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [27] CONVERGENT AND DIVERGENT SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR DIFFERENCE SYSTEM
    Liao Xinyuan (School of Math
    Annals of Differential Equations, 2005, (04) : 562 - 568
  • [28] BOUNDEDNESS AND STABLE OSCILLATIONS IN TWO-DIMENSIONAL ENZYME REDUCED SYSTEMS
    BATTELLI, F
    LAZZARI, C
    MATHEMATICAL BIOSCIENCES, 1986, 82 (01) : 1 - 17
  • [29] Finite difference scheme for two-dimensional periodic nonlinear Schrodinger equations
    Hong, Younghun
    Kwak, Chulkwang
    Nakamura, Shohei
    Yang, Changhun
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 391 - 418
  • [30] A Compact Difference Scheme for an Nonlinear Two-Dimensional Parabolic Inverse Problem
    Wang, Diankun
    Li, Fule
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 381 - 384