A molecular dynamics study of the Si-nanowire@carbon-nanotube nanocomposite with sp3 interfacial bonding

被引:7
|
作者
Wu, J.
Zhang, K. W. [1 ]
Peng, X. Y.
Li, S. M.
Sun, L. Z.
Zhong, J. X.
机构
[1] Xiangtan Univ, Hunan Key Lab Micronano Energy Mat & Devices, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nanotube; Si nanowires; Mechanical properties; Molecular dynamics simulations; STRUCTURAL-PROPERTIES; YOUNGS MODULUS;
D O I
10.1016/j.commatsci.2013.07.029
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics (MD) simulations are performed to study the mechanical properties of nanocomposite of carbon nanotube (CNT) encapsulating a Si-16-fullerene-linked nanowires (Si16NW). It is found that Si16NW is not coaxial with CNT. Instead, it is adsorbed and hence closer to one side of the internal wall of CNT by forming strong sp(3) bonds. These sp(3) bonds can greatly enhance the limit of CNT against torsional and bending deformation. Due to the protection of CNT, the encapsulated Si16NW can maintain its configuration at relatively high torsional angle. The axial Young's modulus of the freestanding Si16NW is found to be more than that of bulk Si and much larger than that of the Si nanowires of similar size. Furthermore, the interfacial sp(3) bonds resulted in a strong enhancement of axial maximum strength of encapsulated Si16NW. However, it is interesting that filling Si16NW into (13,0) CNT does not enhance the axial tensile strength and elastic modulus of the host CNT. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:650 / 655
页数:6
相关论文
共 50 条
  • [31] Enhancing interfacial thermal conductivity of copper-carbon nanotube array composite via metallic bonding: Molecular dynamics simulations
    Wang, Xin
    Wang, Xueliang
    Tong, Yigang
    Wang, Yaping
    CHEMICAL PHYSICS, 2024, 584
  • [32] Molecular wire of urea in carbon nanotube: a molecular dynamics study
    Xiu, Peng
    Tu, Yusong
    Tian, Xingling
    Fang, Haiping
    Zhou, Ruhong
    NANOSCALE, 2012, 4 (02) : 652 - 658
  • [33] Molecular dynamics simulation for interfacial properties of carbon nanotube reinforced aluminum composites
    Patel, Pramod Rakt
    Sharma, Sumit
    Tiwari, S. K.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2021, 29 (01)
  • [34] Molecular dynamics studies of interfacial crystallization behaviors in polyethylene/carbon nanotube composites
    Yu, Bowen
    Fu, Sirui
    Wu, Zhiqiang
    Bai, Hongwei
    Ning, Nanying
    Fu, Qiang
    RSC ADVANCES, 2015, 5 (124): : 102219 - 102227
  • [35] New carbon allotropes in sp + sp3 bonding networks consisting of C8 cubes
    Wang, Jian-Tao
    Chen, Changfeng
    Mizuseki, Hiroshi
    Kawazoe, Yoshiyuki
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (12) : 7962 - 7967
  • [36] Molecular Dynamics Simulations of Interfacial Sliding in Carbon-Nanotube/Diamond Nanocomposites
    Li, Lili
    Xia, Zhenhai H.
    Curtin, William A.
    Yang, Yanqing Q.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (10) : 2331 - 2336
  • [37] Interfacial properties of defective carbon nanotube/polypropylene composites: a molecular dynamics approach
    Mani, Akash
    Sharma, Sumit
    PHYSICA SCRIPTA, 2023, 98 (04)
  • [38] Effect of functionalization on the interfacial binding energy of carbon nanotube/nylon 6 nanocomposites: a molecular dynamics study
    Yang, Jun-Sheng
    Yang, Chuan-Lu
    Wang, Mei-Shan
    Chen, Bao-Dong
    Ma, Xiao-Guang
    RSC ADVANCES, 2012, 2 (07): : 2836 - 2841
  • [39] Low-Temperature Single Carbon Nanotube Spectroscopy of sp3 Quantum Defects
    He, Xiaowei
    Gifford, Brendan J.
    Hartmann, Nicolai F.
    Ihly, Rachelle
    Ma, Xuedan
    Kilina, Svetlana V.
    Luo, Yue
    Shayan, Kamran
    Strauf, Stefan
    Blackburn, Jeffrey L.
    Tretiak, Sergei
    Doorn, Stephen K.
    Htoon, Han
    ACS NANO, 2017, 11 (11) : 10785 - 10796
  • [40] Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy
    Chen, ZY
    Zhao, JP
    Yano, T
    Ooie, T
    Yoneda, M
    Sakakibara, J
    JOURNAL OF APPLIED PHYSICS, 2000, 88 (05) : 2305 - 2308