Deep Supervised t-SNE for SAR Target Recognition

被引:0
|
作者
Yu, Meiting [1 ]
Zhang, Siqian [1 ]
Zhao, Lingjun [1 ]
Kuang, Gangyao [1 ]
机构
[1] Natl Univ Def Technol, Coll Elect Sci & Engn, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
synthetic aperture radar; target recognition; supervised t-SNE; deep supervised t-SNE; DIMENSIONALITY; EIGENFACES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel feature extraction method based on t-distributed stochastic neighbor embedding (t-SNE) is presented for target recognition in synthetic aperture radar (SAR) images. It aims to search and preserve the local structure characteristic of SAR images. Recently, t-SNE has been widely studied in finding the underlying structure of data as an efficient technique. However, less attention has been paid to apply it for target recognition, since t-SNE cannot provide a parametric mapping to deal with the out-of-sample problem. To solve this problem and capture the complex characteristics of SAR images as well as possible, t-SNE is extended by a deep feed-forward network with a complex nonlinear mapping function. The network is pre-trained using a stack of Restricted Boltzmann Machines (RBMs). To boost the performance, the aspect angles of SAR images are used for supervising the t-SNE, which makes the same class more concentrated. Experimental results on moving and stationary target automatic recognition (MSTAR) dataset reveal the effective performance of the proposed method.
引用
收藏
页码:265 / 269
页数:5
相关论文
共 50 条
  • [1] Radar HRRP Target Recognition Based on t-SNE Segmentation and Discriminant Deep Belief Network
    Pan, Mian
    Jiang, Jie
    Kong, Qingpeng
    Shi, Jianguang
    Sheng, Qinghua
    Zhou, Tao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) : 1609 - 1613
  • [2] Deep Self-Supervised t-SNE for Multi-modal Subspace Clustering
    Wang, Qianqian
    Xia, Wei
    Tao, Zhiqiang
    Gao, Quanxue
    Cao, Xiaochun
    [J]. PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 1748 - 1755
  • [3] Conditional t-SNE: more informative t-SNE embeddings
    Bo Kang
    Darío García García
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    [J]. Machine Learning, 2021, 110 : 2905 - 2940
  • [4] Conditional t-SNE: more informative t-SNE embeddings
    Kang, Bo
    Garcia Garcia, Dario
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. MACHINE LEARNING, 2021, 110 (10) : 2905 - 2940
  • [5] Conditional t-SNE: More informative t-SNE embeddings
    Kang, Bo
    Garcia, Dario Garcia
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. 2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [6] Silhouette Analysis for Human Action Recognition Based on Supervised Temporal t-SNE and Incremental Learning
    Cheng, Jian
    Liu, Haijun
    Wang, Feng
    Li, Hongsheng
    Zhu, Ce
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (10) : 3203 - 3217
  • [7] Wasserstein t-SNE
    Bachmann, Fynn
    Hennig, Philipp
    Kobak, Dmitry
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 104 - 120
  • [8] Underwater target recognition method based on t-SNE and stacked nonnegative constrained denoising autoencoder
    Chen, Yuechao
    Xu, Xiaonan
    Zhou, Bin
    Quan, Hengheng
    [J]. INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2019, 48 (11): : 1822 - 1832
  • [9] Deep learning and t-SNE projection for plankton images clusterization
    Homsi Goulart, Antonio Jose
    Morimitsu, Alexandre
    Jacomassi, Renan
    Hirata, Nina
    Lopes, Rubens
    [J]. OCEANS 2021: SAN DIEGO - PORTO, 2021,
  • [10] Graph Layouts by t-SNE
    Kruiger, J. F.
    Rauber, P. E.
    Martins, R. M.
    Kerren, A.
    Kobourov, S.
    Telea, A. C.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 283 - 294