Deep learning and t-SNE projection for plankton images clusterization

被引:0
|
作者
Homsi Goulart, Antonio Jose [1 ]
Morimitsu, Alexandre [1 ]
Jacomassi, Renan [1 ]
Hirata, Nina [1 ]
Lopes, Rubens [2 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[2] Univ Sao Paulo, Oceanog Inst, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
clusterization; dataset labelling; convolutional neural network; plankton imaging;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
In this paper we present a pipeline to cluster unlabelled image samples. Although not restricted to plankton image applications, we present the system within this context. Feature maps obtained from a deep learning architecture (DenseNet) are fed to the t-SNE projection in order to obtain 2D clusters. The method successfully creates clusters that can be used in interactive software, for quick manual classification of images batches.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Inductive t-SNE via deep learning to visualize multi-label images
    Roman-Rangel, Edgar
    Marchand-Maillet, Stephane
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 81 : 336 - 345
  • [2] Conditional t-SNE: more informative t-SNE embeddings
    Kang, Bo
    Garcia Garcia, Dario
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. MACHINE LEARNING, 2021, 110 (10) : 2905 - 2940
  • [3] Conditional t-SNE: More informative t-SNE embeddings
    Kang, Bo
    Garcia, Dario Garcia
    Lijffijt, Jefrey
    Santos-Rodriguez, Raul
    De Bie, Tijl
    [J]. 2021 IEEE 8TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2021,
  • [4] Conditional t-SNE: more informative t-SNE embeddings
    Bo Kang
    Darío García García
    Jefrey Lijffijt
    Raúl Santos-Rodríguez
    Tijl De Bie
    [J]. Machine Learning, 2021, 110 : 2905 - 2940
  • [5] Deep Supervised t-SNE for SAR Target Recognition
    Yu, Meiting
    Zhang, Siqian
    Zhao, Lingjun
    Kuang, Gangyao
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON FRONTIERS OF SENSORS TECHNOLOGIES (ICFST), 2017, : 265 - 269
  • [6] Wasserstein t-SNE
    Bachmann, Fynn
    Hennig, Philipp
    Kobak, Dmitry
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 13713 : 104 - 120
  • [7] Interactive Supervision with t-SNE
    Luus, Francois
    Khan, Naweed
    Akhalwaya, Ismail
    [J]. PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE CAPTURE (K-CAP '19), 2019, : 85 - 92
  • [8] Graph Layouts by t-SNE
    Kruiger, J. F.
    Rauber, P. E.
    Martins, R. M.
    Kerren, A.
    Kobourov, S.
    Telea, A. C.
    [J]. COMPUTER GRAPHICS FORUM, 2017, 36 (03) : 283 - 294
  • [9] Visualization of SNPs with t-SNE
    Platzer, Alexander
    [J]. PLOS ONE, 2013, 8 (02):
  • [10] Accelerating Hyperbolic t-SNE
    Skrodzki, Martin
    van Geffen, Hunter
    Chaves-de-Plaza, Nicolas F.
    Hollt, Thomas
    Eisemann, Elmar
    Hildebrandt, Klaus
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 4403 - 4415