Solving the Maxwell-Bloch equations for resonant nonlinear optics using GPUs

被引:14
|
作者
Demeter, G. [1 ]
机构
[1] Hungarian Acad Sci, Wigner Res Ctr Phys, H-1121 Budapest, Hungary
关键词
Pulse propagation; Maxwell-Bloch equations; Resonant nonlinear optics; Quantum ensembles; CPU; CUDA; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; PULSE-PROPAGATION; 3-LEVEL; SIMULATION; MEDIA; UNITS;
D O I
10.1016/j.cpc.2012.12.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We solve the Maxwell-Bloch equations of resonant nonlinear optics using GPUs and compare the computation times with traditional single- and multithreaded programs. A detailed benchmarldng of programs as a function of various parameters shows how the massive parallelism built into GPUs becomes more and more advantageous as the physical problem becomes more and more demanding. For the case of multimode light propagating through an inhomogeneously broadened medium of many-level quantum systems, the program executing on GPUs can be over 20 times faster than that executing on all cores of a modern CPU: The methods presented can be applied in a wide area of atomic physics where the time evolution of atomic ensembles is to be computed. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1203 / 1210
页数:8
相关论文
共 50 条
  • [31] GLOBAL STOCHASTICITY CRITERION FOR MAXWELL-BLOCH EQUATIONS
    GANGOPADHYAY, G
    RAY, DS
    PHYSICAL REVIEW A, 1989, 40 (07): : 3750 - 3753
  • [32] Self-oscillation in the Maxwell-Bloch equations
    Wu, Jie
    Armen, Michael A.
    Mabuchi, Hideo
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2018, 35 (10) : 2382 - 2386
  • [33] Rogue waves of the Hirota and the Maxwell-Bloch equations
    Li, Chuanzhong
    He, Jingsong
    Porseizan, K.
    PHYSICAL REVIEW E, 2013, 87 (01)
  • [34] FACTORIZATION ASSUMPTION IN THE SOLUTION OF MAXWELL-BLOCH EQUATIONS
    MATULIC, L
    SANCHEZMONDRAGON, JJ
    TORRESCISNEROS, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1982, 72 (12) : 1734 - 1734
  • [35] Lattices of Neumann oscillators and Maxwell-Bloch equations
    Saksida, Pavle
    NONLINEARITY, 2006, 19 (03) : 747 - 768
  • [36] Integrability and geometric prequantization of Maxwell-Bloch equations
    Puta, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (03): : 243 - 250
  • [37] The Maxwell-Bloch equations on fractional Leibniz algebroids
    Ivan, Mihai
    Ivan, Gheorghe
    Opris, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 50 - 58
  • [38] Homoclinic orbits in the Maxwell-Bloch equations with a probe
    Holm, DD
    Kovacic, G
    Wettergren, TA
    PHYSICAL REVIEW E, 1996, 54 (01): : 243 - 256
  • [39] Numerical Solutions of the Maxwell-Bloch Laser Equations
    Guo, B.-Y.
    Martin, I.
    Perez-Garcia, V. M.
    Vazquez, L.
    Journal of Computational Physics, 129 (01):
  • [40] Soliton solutions of coupled Maxwell-Bloch equations
    Chakravarty, S.
    PHYSICS LETTERS A, 2016, 380 (11-12) : 1141 - 1150