QUANTUM CONTROL AND INFORMATION PROCESSING IN OPTICAL LATTICES

被引:0
|
作者
Lessen, P. S. [1 ]
Haycock, D. L. [1 ]
Klose, G. [1 ]
Smith, G. A. [1 ]
Deutsch, I. H. [2 ]
Brennen, G. K. [2 ]
机构
[1] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[2] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
optical lattice; quantum computation; coherent control; quantum state reconstruction;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Neutral atoms offer a promising platform for single- and many-body quantum control, as required for quantum information processing. This includes excellent isolation from the decohering influence of the environment, and the existence of well developed techniques for atom trapping and coherent manipulation. We present a review of our work to iniplement quantum control and measurement for ultra-cold atoms in far-off-resonance optical lattice traps. In recent experiments we have demonstrated coherent behavior of mesoscopic atomic spinor wavepackets in optical double-well potentials, and carried out quantum state tomography to reconstruct the full density matrix for the atomic spin degrees of freedom. This model system shares a number of important features with proposals to implement quantum logic and quantum computing in optical lattices. We present a theoretical analysis of a protocol for universal quantum logic via single qubit operations and an entangling gate based on electric dipole-dipole interactions. Detailed calculations including the full atomic hyperfine structure suggests that high-fidelity quantum gates are possible under realistic experimental conditions.
引用
收藏
页码:20 / 32
页数:13
相关论文
共 50 条
  • [31] Scalable quantum information processing and the optical topological quantum computer
    S. Devitt
    Optics and Spectroscopy, 2010, 108 : 267 - 281
  • [32] Scalable quantum information processing and the optical topological quantum computer
    Devitt, S.
    OPTICS AND SPECTROSCOPY, 2010, 108 (02) : 267 - 281
  • [33] Optimal control of atom transport for quantum gates in optical lattices
    De Chiara, G.
    Calarco, T.
    Anderlini, M.
    Montangero, S.
    Lee, P. J.
    Brown, L.
    Phillips, W. D.
    Porto, J. V.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [34] Survey of control performance in quantum information processing
    David Hocker
    Yicong Zheng
    Robert Kosut
    Todd Brun
    Herschel Rabitz
    Quantum Information Processing, 2016, 15 : 4361 - 4390
  • [35] Survey of control performance in quantum information processing
    Hocker, David
    Zheng, Yicong
    Kosut, Robert
    Brun, Todd
    Rabitz, Herschel
    QUANTUM INFORMATION PROCESSING, 2016, 15 (11) : 4361 - 4390
  • [36] Quantum information processing and quantum control with trapped atomic ions
    Wineland, D. J.
    PHYSICA SCRIPTA, 2009, T137
  • [37] Designed defects in 2D antidot lattices for quantum information processing
    Pedersen, Jesper
    Flindt, Christian
    Mortensen, Niels Asger
    Jauho, Antti-Pekka
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1075 - 1077
  • [38] Generating optical Schrodinger kittens for quantum information processing
    Ourjoumtsev, A
    Tualle-Brouri, R
    Laurat, J
    Grangier, P
    SCIENCE, 2006, 312 (5770) : 83 - 86
  • [39] Silicon nanophotonic networks for quantum optical information processing
    Hach, Edwin E., III
    MACHINE INTELLIGENCE AND BIO-INSPIRED COMPUTATION: THEORY AND APPLICATIONS X, 2016, 9850
  • [40] QUANTUM-WELLS FOR OPTICAL INFORMATION-PROCESSING
    MILLER, DAB
    OPTICAL ENGINEERING, 1987, 26 (05) : 368 - 372