Maximum Distance Separable Array Codes Allowing Partial Collaboration

被引:2
|
作者
Zhang, Yuejia [1 ]
Liu, Shiqiu [1 ]
Chen, Li [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Commun Engn, Guangzhou 510006, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Array codes; partial collaboration; regenerating codes;
D O I
10.1109/LCOMM.2020.2992550
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter considers the problem of repairing multiple node failures through partial collaboration in a distributed storage system (DSS). In the repair process, each failed node firstly connects to d >= k alive nodes to download data, and then exchanges data with other repairing nodes. Partial collaboration allows each failed node to only connect to some (not all) of the other repairing nodes to exchange data. Constructions of partially collaborative regenerating codes with d = k at the minimum-storage regime have been studied before. We propose a code construction using the maximum distance separable (MDS) array codes to achieved > k, and show that the constructed code asymptotically approaches the minimum storage repair point as the number of failed nodes grows.
引用
收藏
页码:1612 / 1615
页数:4
相关论文
共 50 条
  • [31] On Maximal Distance Separable Codes
    万哲先
    谢邦杰
    [J]. Communications in Mathematical Research, 1995, (03) : 257 - 259
  • [32] Exact analysis of bit error rate of maximum-distance-separable codes
    Zhang, LJ
    Gao, CY
    Cao, ZG
    [J]. GLOBECOM '00: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1- 3, 2000, : 816 - 819
  • [33] Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes
    Kumar, Siddhartha
    Lin, Hsuan-Yin
    Rosnes, Eirik
    Graell i Amat, Alexandre
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4243 - 4273
  • [34] THROUGHPUT EVALUATION OF MULTICAST ERROR CONTROL SCHEMES WITH MAXIMUM DISTANCE SEPARABLE CODES
    SAKAKIBARA, K
    KASAHARA, M
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART I-COMMUNICATIONS, 1995, 78 (08): : 46 - 56
  • [35] Parallel Concatenation of Non-Binary Linear Random Fountain Codes with Maximum Distance Separable Codes
    Blasco, Francisco Lazaro
    Garrammone, Giuliano
    Liva, Gianluigi
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (10) : 4067 - 4075
  • [36] Note on maximal distance separable codes
    杨建生
    王德秀
    靳庆芳
    [J]. Advances in Manufacturing, 2009, (05) : 409 - 411
  • [37] Quantum generalized Reed-Solomon codes: Unified framework for quantum maximum-distance-separable codes
    Li, Zhuo
    Xing, Li-Juan
    Wang, Xin-Mei
    [J]. PHYSICAL REVIEW A, 2008, 77 (01)
  • [38] Index and Maximum Distance Separable Modulation
    Zhu, Yongjia
    He, Yuyao
    Yao, Rugui
    Fan, Ye
    Xu, Juan
    [J]. IEEE COMMUNICATIONS LETTERS, 2023, 27 (12) : 3190 - 3194
  • [39] Absolutely maximally entangled states, quantum-maximum-distance-separable codes, and quantum repeaters
    Alsina, Daniel
    Razavi, Mohsen
    [J]. PHYSICAL REVIEW A, 2021, 103 (02)
  • [40] Rate (n-1)/n Systematic Memory Maximum Distance Separable Convolutional Codes
    Barbero, Angela
    Ytrehus, Oyvind
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 3018 - 3030