Comparative Analysis of Classifiers for Automatic Language Recognition in Spontaneous Speech

被引:1
|
作者
Simonchik, Konstantin [1 ,2 ]
Novoselov, Sergey [1 ,2 ]
Lavrentyeva, Galina [1 ,2 ]
机构
[1] ITMO Univ, St Petersburg, Russia
[2] Speech Technol Ctr, Krasutskogo St 4, St Petersburg 196084, Russia
来源
SPEECH AND COMPUTER | 2016年 / 9811卷
关键词
Language recognition; i-vectors; SVM; LDA; Naive bayes;
D O I
10.1007/978-3-319-43958-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider a language identification system based on the state-of-the-art i-vector method. Paper presents a comparative analysis of different methods for the classification in the i-vector space to determine the most efficient for this task. Experimental results show the reliability of the method based on linear discriminant analysis and naive Bayes classifier which is sufficient for usage in practical applications.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 50 条
  • [21] Applications of automatic speech recognition to speech and language development in young children
    Russell, M
    Brown, C
    Skilling, A
    Series, R
    Wallace, J
    Bonham, B
    Barker, P
    ICSLP 96 - FOURTH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, PROCEEDINGS, VOLS 1-4, 1996, : 176 - 179
  • [22] Summarization of Spontaneous Speech using Automatic Speech Recognition and a Speech Prosody based Tokenizer
    Szaszak, Gyorgy
    Tundik, Mate Akos
    Beke, Andras
    KDIR: PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL. 1, 2016, : 221 - 227
  • [23] Automatic speech recognition: A primer for speech-language pathology researchers
    Keshet, Joseph
    INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY, 2018, 20 (06) : 599 - 609
  • [24] Automatic Speech Recognition for Supporting Endangered Language Documentation
    Prud'hommeaux, Emily
    Jimerson, Robbie
    Hatcher, Richard
    Michelson, Karin
    LANGUAGE DOCUMENTATION & CONSERVATION, 2021, 15 : 491 - 513
  • [25] A Decade of Discriminative Language Modeling for Automatic Speech Recognition
    Saraclar, Murat
    Dikici, Erinc
    Arisoy, Ebru
    SPEECH AND COMPUTER (SPECOM 2015), 2015, 9319 : 11 - 22
  • [26] An Evaluation of Structured Language Modeling for Automatic Speech Recognition
    Bjorklund, Johanna
    Cleophas, Loek
    Karlsson, My
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2017, 23 (11) : 1019 - 1034
  • [27] Skrybot - A System for Automatic Speech Recognition of Polish Language
    Pawlaczyk, Leslaw
    Bosky, Pawel
    MAN-MACHINE INTERACTIONS, 2009, 59 : 381 - +
  • [28] IMPROVING AUTOMATIC SPEECH RECOGNITION ROBUSTNESS FOR THE ROMANIAN LANGUAGE
    Buzo, Andi
    Cucu, Horia
    Burileanu, Corneliu
    19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 2119 - 2122
  • [29] Automatic Speech Recognition of Isolated Words in Hindi Language
    Wani, Priyanka
    Bormane, D. S.
    Patil, U. G.
    Shirbahadurkar, S. D.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2016,
  • [30] Automatic recognition of second language speech-in-noise
    Kim, Seung-Eun
    Chernyak, Bronya R.
    Seleznova, Olga
    Keshet, Joseph
    Goldrick, Matthew
    Bradlow, Ann R.
    JASA EXPRESS LETTERS, 2024, 4 (02):