The isotope effect on impurities and bulk ion particle transport in the Large Helical Device

被引:17
|
作者
Ida, K. [1 ,2 ]
Sakamoto, R. [1 ,2 ]
Yoshinuma, M. [1 ,2 ]
Yamazaki, K. [3 ]
Kobayashi, T. [1 ,2 ]
Fujiwara, Y. [1 ]
Suzuki, C. [1 ]
Fuji, K. [4 ]
Chen, J. [5 ]
Murakami, I [1 ,2 ]
Emoto, M. [1 ]
Mackenbach, R. [6 ]
Yamada, H. [1 ,2 ]
Motojima, G. [1 ]
Masuzaki, S. [1 ,2 ]
Mukai, K. [1 ,2 ]
Nagaoka, K. [1 ,7 ]
Takahashi, H. [1 ,2 ]
Oishi, T. [1 ,2 ]
Goto, M. [1 ,2 ]
Morita, S. [1 ,2 ]
Tamura, N. [1 ,2 ]
Nakano, H. [1 ,2 ]
Kamio, S. [1 ]
Seki, R. [1 ,2 ]
Yokoyama, M. [1 ,2 ]
Murakami, S. [8 ]
Nunami, M. [1 ,2 ]
Nakata, M. [1 ,2 ]
Morisaki, T. [1 ,2 ]
Osakabe, M. [1 ,2 ]
机构
[1] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[2] Grad Univ Adv Studies, SOKENDAI, Toki, Gifu 5095292, Japan
[3] Kyushu Univ, Res Inst Appl Mech, Kasuga, Fukuoka, Japan
[4] Kyoto Univ, Grad Sch Engn, Dept Mech Engn & Sci, Kyoto 6158540, Japan
[5] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China
[6] Eindhoven Univ Technol, Merovingersweg 1, NL-5616 JA Eindhoven, Netherlands
[7] Nagoya Univ, Div Particle & Astrophys Sci, Grad Sch Sci, Nagoya, Aichi 4648601, Japan
[8] Kyoto Univ, Dept Nucl Engn, Kyoto 6158510, Japan
关键词
isotope effect; impurity transport; ion particle transport; large helical device; MODE;
D O I
10.1088/1741-4326/ab0e41
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The isotope effect on impurities and bulk ion particle transport is investigated by using the deuterium, hydrogen, and isotope mixture plasma in the Large Helical Device (LHD). A clear isotope effect is observed in the impurity transport but not the bulk ion transport. The isotope effects on impurity transport and ion heat transport are observed as a primary and a secondary effect, respectively, in the plasma with an internal transport barrier (I'FB). In the LHD, an ion ITB is always transient because the impurity hole triggered by the increase of ion temperature gradient causes the enhancement of ion heat transport and gradually terminates the ion ITB. The formation of an impurity hole becomes slower in the deuterium (D) plasma than the hydrogen (H) plasma. This primary isotope effect on impurity transport contributes the longer sustainment of the ion ITB state because the low ion thermal diffusivity can be sustained as long as the normalized carbon impurity gradient R/L-n,L-c, where L-c = -(del n(c)/n(c))(-1), is above the critical value (similar to-5). Therefore, the longer sustainment of the ITB state in the deuterium plasma is considered to be a secondary isotope effect due to the mitigation of the impurity hole. The radial profile of H and D ion density is measured using bulk charge exchange spectroscopy inside the isotope mixture plasma. The decay time of H ion density after the H-pellet injection and the decay time of D ion density after D-pellet injection are almost identical, which demonstrates that there is no significant isotope effect on ion particle transport.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Influence of the resonant magnetic perturbations on transport in the Large Helical Device
    Jakubowski, M. W.
    Drewelow, P.
    Masuzaki, S.
    Tanaka, K.
    Pedersen, T. S.
    Akiyama, T.
    Bozhenkov, S.
    Dinklage, A.
    Kobayashi, M.
    Narushima, Y.
    Sakakibara, S.
    Suzuki, Y.
    Wolf, R.
    Yamada, H.
    NUCLEAR FUSION, 2013, 53 (11)
  • [32] Improvement of accelerator of negative ion source on the Large Helical Device
    Kisaki, M.
    Ikeda, K.
    Osakabe, M.
    Tsumori, K.
    Nakano, H.
    Geng, S.
    Nagaoka, K.
    Kaneko, O.
    Takeiri, Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (02):
  • [33] Investigation on the influence of plasma properties and SOL transport on the particle flux profiles on divertor plates in the Large Helical Device
    Masuzaki, S.
    Kobayashi, M.
    Morisaki, T.
    Ohyabu, N.
    Komori, A.
    Feng, Y.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 286 - 289
  • [34] Self-consistent transport simulation of boron dust particle injection in the peripheral plasma in Large Helical Device
    Shoji, M.
    Kawamura, G.
    Smirnov, R.
    Tanaka, Y.
    Masuzaki, S.
    Nespoli, F.
    Gilson, E.
    Lunsford, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2024, 64 (7-8)
  • [35] Field line and particle orbit analysis in the periphery of the large helical device
    Matsumoto, Y
    Oikawa, S
    Watanabe, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (07) : 1684 - 1693
  • [36] Investigation of ion and electron heat transport of high-Te ECH heated discharges in the large helical device
    Pablant, N. A.
    Satake, S.
    Yokoyama, M.
    Gates, D. A.
    Bitter, M.
    Bertelli, N.
    Delgado-Aparicio, L.
    Dinklage, A.
    Goto, M.
    Hill, K. W.
    Igamai, S.
    Kubo, S.
    Lazerson, S.
    Matsuoka, S.
    Mikkelsen, D. R.
    Morita, S.
    Oishi, T.
    Seki, R.
    Shimozuma, T.
    Suzuki, C.
    Suzuki, Y.
    Takahashi, H.
    Yamada, H.
    Yoshimura, Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (04)
  • [37] Impurity transport simulation in the peripheral plasma in the large helical device with tungsten closed helical divertor
    Shoji, M.
    Kawamura, G.
    Masuzaki, S.
    Morisaki, T.
    NUCLEAR MATERIALS AND ENERGY, 2018, 17 : 188 - 193
  • [38] Design of collective Thomson scattering system using 77 GHz gyrotron for bulk and tail ion diagnostics in the large helical device
    Nishiura, M.
    Tanaka, K.
    Kubo, S.
    Saito, T.
    Tatematsu, Y.
    Notake, T.
    Kawahata, K.
    Shimozuma, T.
    Mutoh, T.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [39] 6 MeV heavy ion beam probe on the Large Helical Device
    Ido, T.
    Shimizu, A.
    Nishiura, M.
    Nishizawa, A.
    Katoh, S.
    Tsukada, K.
    Yokota, M.
    Ogawa, H.
    Inoue, T.
    Hamada, Y.
    Crowley, T. P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (10):
  • [40] Deuterium experiment with large-scale negative ion source for large helical device
    Nakano, H.
    Kisaki, M.
    Ikeda, K.
    Tsumori, K.
    Nagaoka, K.
    Haba, Y.
    Masaki, S.
    Fujiwara, Y.
    Kamio, S.
    Osakabe, M.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (59)