Ab initio thermodynamic study of (Ba,Sr)(Co,Fe)O3 perovskite solid solutions for fuel cell applications

被引:31
|
作者
Fuks, David [1 ]
Mastrikov, Yuri [2 ,3 ]
Kotomin, Eugene [2 ,4 ]
Maier, Joachim [4 ]
机构
[1] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
[2] Univ Latvia, Inst Solid State Phys, LV-1063 Riga, Latvia
[3] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[4] Max Planck Inst Solid State Res, D-70506 Stuttgart, Germany
关键词
NEUTRON-DIFFRACTION; OXYGEN STOICHIOMETRY; PHASE COMPETITION; BA0.5SR0.5CO0.8FE0.2O3-DELTA; STABILITY; OXIDE; MICROELECTRODES; DECOMPOSITION; PERFORMANCE; CATHODE;
D O I
10.1039/c3ta12874a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
(Ba,Sr)(Co,Fe)O-3 (BSCF) perovskite solid solutions are promising materials for solid oxide fuel cell cathodes and oxygen permeation membranes. Cathode performance strongly depends on the morphology of these materials remaining as a single phase or two-phase mixture. Combining ab initio calculations of the atomic and electronic structure of different supercells with thermodynamics of solid solutions, we have constructed and discussed phase diagrams of several important BSCF chemical compositions. It is demonstrated that in BSC cobaltite solid solution the spinodal decomposition may occur already at relatively low temperatures, while ferrite (BSF and SCF) solid solutions decompose at relatively high temperatures forming a two-phase system where the coexisting hexagonal and cubic phases significantly differ in fractions of constituents.
引用
收藏
页码:14320 / 14328
页数:9
相关论文
共 50 条
  • [41] Characterisation of La0.6Sr0.4CO0.2Fe0.8O3-δ - Ba0.5Sr0.5CO0.8Fe0.2O3-δ composite as cathode for solid oxide fuel cells
    Giuliano, Alice
    Carpanese, Maria Paola
    Panizza, Marco
    Cerisola, Giacomo
    Clematis, Davide
    Barbucci, Antonio
    ELECTROCHIMICA ACTA, 2017, 240 : 258 - 266
  • [42] Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing
    Zhang, Yaohui
    Liu, Jiang
    Huang, Xiqiang
    Lu, Zhe
    Su, Wenhui
    SOLID STATE IONICS, 2008, 179 (7-8) : 250 - 255
  • [43] Nanostructured (Ba,Sr)(Co,Fe)O3-δ Impregnated (La,Sr)MnO3 Cathode for Intermediate-Temperature Solid Oxide Fuel Cells
    Ai, Na
    Jiang, San Ping
    Lue, Zhe
    Chen, Kongfa
    Su, Wenhui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : B1033 - B1039
  • [44] INVESTIGATION OF THE TEMPERATURE DEPENDENCE OF TOTAL POLARIZATION, COERCIVE FORCE AND HYSTERESIS LOSSES OF POLYCRYSTALLINE SOLID SOLUTIONS (BA,SR)TIO3, BA(TI,SN)O3 AND BA(TI,ZR)O3
    BOKOV, VA
    SOVIET PHYSICS-TECHNICAL PHYSICS, 1958, 3 (01): : 70 - 78
  • [45] Defect Chemical Modeling of (La, Sr)(Co, Fe)O3 − δ
    Edith Bucher
    Werner Sitte
    Journal of Electroceramics, 2004, 13 : 779 - 784
  • [46] Electrochemical properties of pure Ba0.5Sr0.5Co0.8Fe0.2O3 and Ba0.5Sr0.5Co0.8Fe0.2O3-based composite cathodes for an intermediate temperature solid oxide fuel cell with Sc-doped zirconia solid electrolyte
    Park, Hee Jung
    Kwak, Chan
    Kim, Ju Sik
    Ahn, Sung Jin
    JOURNAL OF POWER SOURCES, 2012, 213 : 31 - 39
  • [47] First-principles study of (Ba, Ca)TiO3 and Ba(Ti, Zr)O3 solid solutions
    Amoroso, Danila
    Cano, Andres
    Ghosez, Philippe
    PHYSICAL REVIEW B, 2018, 97 (17)
  • [48] Intermediate temperature solid oxide fuel cell using (La,Sr)(Co,Fe)O3-based cathodes
    Kim, Wi-Heon
    Song, Hwa-Seob
    Moon, Jooho
    Lee, Hae-Won
    SOLID STATE IONICS, 2006, 177 (35-36) : 3211 - 3216
  • [49] Ferroelectric solid solutions (Ba,Sr)TiO3 for microwave applications
    Alexandru, HV
    Berbecaru, C
    Stanculescu, F
    Ioachim, A
    Banciu, MG
    Toacsen, MI
    Nedelcu, L
    Ghetu, D
    Stoica, G
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2005, 118 (1-3): : 92 - 96
  • [50] Dielectric Properties of Ba0.6Sr0.4TiO3-Sr(Ga0.5Ta0.5)O3 Solid Solutions
    Xu, Yebin
    Liu, Ting
    He, Yanyan
    Yuan, Xiao
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2008, 55 (11) : 2369 - 2376