Multiplier sequences, classes of generalized Bessel functions and open problems

被引:1
|
作者
Csordas, George [1 ]
Forgacs, Tamas [2 ]
机构
[1] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
[2] Calif State Univ Fresno, Dept Math, Fresno, CA 93740 USA
关键词
Multiplier sequence; Generalized Bessel function; Parametrized family of multiplier sequences; Integral representation;
D O I
10.1016/j.jmaa.2015.08.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the study of the distribution of zeros of generalized Bessel-type functions, the principal goal of this paper is to identify new research directions in the theory of multiplier sequences. The investigations focus on multiplier sequences interpolated by functions which are not entire and sums, averages and parametrized families of multiplier sequences. The main results include (i) the development of a 'logarithmic' multiplier sequence and (ii) several integral representations of a generalized Bessel-type function utilizing some ideas of G.H. Hardy and L.V. Ostrovskii. The explorations and analysis, augmented throughout the paper by a plethora of examples, led to a number of conjectures and intriguing open problems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1369 / 1389
页数:21
相关论文
共 50 条
  • [21] GENERALIZED Q-BESSEL FUNCTIONS
    FLOREANINI, R
    VINET, L
    CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) : 345 - 354
  • [22] Geometric Properties of Generalized Bessel Functions
    Baricz, Arpad
    GENERALIZED BESSEL FUNCTIONS OF THE FIRST KIND, 2010, 1994 : 23 - 69
  • [23] On generalized m-Bessel functions
    Virchenko, NO
    Haidey, VO
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1999, 8 (3-4) : 275 - 286
  • [24] THEORY OF GENERALIZED BESSEL-FUNCTIONS
    DATTOLI, G
    GIANNESSI, L
    MEZI, L
    TORRE, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1990, 105 (03): : 327 - 348
  • [25] PARTIAL SUMS OF GENERALIZED BESSEL FUNCTIONS
    Orhan, Halit
    Yagmur, Nihat
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04): : 863 - 877
  • [26] Generalized Bessel functions and Kapteyn series
    Dattoli, G
    Torre, A
    Lorenzutta, S
    Maino, G
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (08) : 117 - 125
  • [27] Generalized Bessel functions in tunnelling ionization
    Reiss, HR
    Krainov, VP
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20): : 5575 - 5585
  • [28] Generalized Bessel functions: Theory and their applications
    Khosravian-Arab, Hassan
    Dehghan, Mehdi
    Eslahchi, M. R.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 6389 - 6410
  • [29] A GENERALIZED TURAN EXPRESSION FOR BESSEL FUNCTIONS
    ALSALAM, WA
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (02): : 146 - &
  • [30] Diffrential Subordination and Generalized Bessel Functions
    Rahrovi, Samira
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 281 - 291