Stationary Correlations for the 1D KPZ Equation

被引:70
|
作者
Imamura, Takashi [1 ]
Sasamoto, Tomohiro [2 ,3 ]
机构
[1] Univ Tokyo, Res Ctr Adv Sci & Technol, Tokyo, Japan
[2] Chiba Univ, Dept Math & Informat, Chiba, Japan
[3] Tech Univ Munich, Zentrum Math, Garching, Germany
关键词
KPZ equation; Replica method; Exact solution; Fredholm determinant; POLYNUCLEAR GROWTH-MODEL; UNIVERSAL FLUCTUATIONS; SCALING FUNCTIONS; BETHE-ANSATZ; FREE-ENERGY; DISTRIBUTIONS; INTERFACES; SURFACE; POLYMER; TASEP;
D O I
10.1007/s10955-013-0710-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study exact stationary properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) equation by using the replica approach. The stationary state for the KPZ equation is realized by setting the initial condition the two-sided Brownian motion (BM) with respect to the space variable. Developing techniques for dealing with this initial condition in the replica analysis, we elucidate some exact nature of the height fluctuation for the KPZ equation. In particular, we obtain an explicit representation of the probability distribution of the height in terms of the Fredholm determinants. Furthermore from this expression, we also get the exact expression of the space-time two-point correlation function.
引用
收藏
页码:908 / 939
页数:32
相关论文
共 50 条
  • [21] Stationary modulated-amplitude waves in the 1D complex Ginzburg-Landau equation
    Lan, YH
    Garnier, N
    Cvitanovic, P
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 188 (3-4) : 193 - 212
  • [22] Non-stationary KPZ equation from ASEP with slow bonds
    Yang, Kevin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (02): : 1246 - 1294
  • [23] HIGHLY SELECTIVE 1D CH CORRELATIONS
    STELTEN, J
    LEIBFRITZ, D
    MAGNETIC RESONANCE IN CHEMISTRY, 1995, 33 (10) : 827 - 830
  • [24] Height Fluctuations for the Stationary KPZ Equation (vol 18, 20, 2015)
    Borodin, Alexei
    Corwin, Ivan
    Ferrari, Patrik
    Veto, Balint
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2021, 24 (02)
  • [25] Stationary localized solutions, fronts, and traveling fronts to the generalized 1D Swift-Hohenberg equation
    Lerman, LM
    Belyakov, LA
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 801 - 806
  • [26] STATIONARY STATES IN A 1D SYSTEM OF INELASTIC PARTICLES
    Gerasymov, O. I.
    Vandewalle, N.
    Spivak, A. Ya.
    Khudyntsev, N. N.
    Lumay, G.
    Dorbollo, S.
    Klymenkov, O. A.
    UKRAINIAN JOURNAL OF PHYSICS, 2008, 53 (11): : 1128 - 1135
  • [27] Universal Correlations in a Nonlinear Periodic 1D System
    Silberberg, Yaron
    Lahini, Yoav
    Bromberg, Yaron
    Small, Eran
    Morandotti, Roberto
    PHYSICAL REVIEW LETTERS, 2009, 102 (23)
  • [28] Stochastic entropies and fluctuation theorems for a generic 1D KPZ system: Internal and external dynamics
    Rodriguez, Miguel A.
    Gallego, Rafael
    Wio, Horacio S.
    EPL, 2021, 136 (05)
  • [29] Time correlations in 1D quantum impurity problems
    Lesage, F
    Saleur, H
    Skorik, S
    PHYSICAL REVIEW LETTERS, 1996, 76 (18) : 3388 - 3391
  • [30] Time correlations in 1D quantum impurity problems
    Phys Rev Lett, 18 (3388):