Fusion Despeckling Based on Surface Variation Anisotropic Diffusion Filter and Ratio Image Filter

被引:14
|
作者
Guo, Fengcheng [1 ]
Zhang, Guo [1 ,2 ]
Zhang, Qingjun [2 ,3 ]
Zhao, Ruishan [4 ]
Deng, Mingjun [5 ]
Xu, Kai [1 ]
Jia, Peng [6 ]
Hao, Xiaoyun [7 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[3] China Acad Space Technol, Beijing 100094, Peoples R China
[4] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
[5] Xiangtan Univ, Sch Informat Engn, Xiangtan 411000, Peoples R China
[6] China Satellite Nav Off, Beijing 100034, Peoples R China
[7] Shandong Aerosp Electrotechnol Inst, Yantai 264000, Peoples R China
来源
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Anisotropic diffusion (AD); ratio image filter; speckle reduction; surface variation; BAYESIAN WAVELET SHRINKAGE; EDGE-DETECTION; LANDSAT TM; SAR; TRANSFORM; NOISE;
D O I
10.1109/TGRS.2019.2948890
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This article proposes a novel fusing filter algorithm based on a surface variation anisotropic diffusion (SVAD) filter and a ratio image filter to achieve good speckle reduction and edge preservation. The proposed algorithm can be divided into three steps. First, the proposed SVAD filter effectively calculates the diffusion coefficient of each pixel to obtain filtering results on different scales. Second, the proposed ratio image filter obtains a new denoising result that can effectively recover some details lost with the SVAD filter. Then, the two filtering results are fused to obtain the final despeckling result. Furthermore, the effects of the weighting coefficients of the fusion processing and the number of iterations of the ratio image filter on the final filtering results are analyzed. The proposed algorithm is effectively evaluated by conducting some experiments on the added noise image and real synthetic aperture radar (SAR) images. The experimental results confirm that the proposed method can not only significantly reduce speckle but also effectively preserve the edge information of images.
引用
收藏
页码:2398 / 2411
页数:14
相关论文
共 50 条
  • [21] Improved Geometric Anisotropic Diffusion Filter for Radiography Image Enhancement
    Ben Gharsallah, Mohamed
    Ben Mhammed, Issam
    Ben Braiek, Ezzedine
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2018, 24 (02): : 231 - 239
  • [22] IMPULSE-MOWING ANISOTROPIC DIFFUSION FILTER FOR IMAGE DENOISING
    Kim, Hakran
    Kim, Seongjai
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2923 - 2927
  • [23] Ultrasound Image Enhancement Using An Adaptive Anisotropic Diffusion Filter
    Toufique, Y.
    El Moursli, R. Cherkaoui
    Masmoudi, Lh
    El Kharrim, A.
    Kaci, M.
    Allal, S.
    2014 MIDDLE EAST CONFERENCE ON BIOMEDICAL ENGINEERING (MECBME), 2014, : 1 - 4
  • [24] SAR Image Despeckling using Refined Lee Filter
    Yommy, Aiyeola Sikiru
    Liu, Rongke
    Wu, Shuang
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [25] Novel anisotropic diffusion filter
    Gao, Xiang
    Qin, Qin
    Wang, Ru-Li
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2007, 26 (03): : 237 - 240
  • [26] Novel anisotropic diffusion filter
    Gao Xiang
    Qin Qin
    Wang Ru-Li
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2007, 26 (03) : 237 - 240
  • [27] A Nonlinear Guided Filter for Polarimetric SAR Image Despeckling
    Ma, Xiaoshuang
    Wu, Penghai
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 1918 - 1927
  • [28] Improved anisotropic diffusion filtering for SAR image despeckling
    Fabbrini, L.
    Greco, M.
    Messina, M.
    Pinelli, G.
    ELECTRONICS LETTERS, 2013, 49 (10) : 672 - 673
  • [29] Region-based fuzzy shock filter with anisotropic diffusion for adaptive image enhancement
    Fu, Shujun
    Ruan, Qiuqi
    Wang, Wenqia
    Chen, Jingnian
    INTELLIGENT COMPUTING IN SIGNAL PROCESSING AND PATTERN RECOGNITION, 2006, 345 : 1036 - 1041
  • [30] Region-based anisotropic diffusion with soft shock filter for adaptive image enhancement
    Fu Shujun
    Ruan Qiuqi
    Wang Wenqia
    Mu Chengpo
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (01): : 56 - 58