Multivalent di-nucleosome recognition enables the Rpd3S histone deacetylase complex to tolerate decreased H3K36 methylation levels

被引:41
|
作者
Huh, Jae-Wan [1 ]
Wu, Jun [1 ]
Lee, Chul-Hwan [1 ]
Yun, Miyong [1 ]
Gilada, Daniel [1 ]
Brautigam, Chad A. [2 ]
Li, Bing [1 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Dept Biochem, Dallas, TX 75390 USA
来源
EMBO JOURNAL | 2012年 / 31卷 / 17期
基金
新加坡国家研究基金会; 美国国家卫生研究院;
关键词
chromatin recognition; di-nucleosome; epigenetics; HDAC; CHROMATIN-STRUCTURE; IN-VITRO; TRANSCRIPTION; ACETYLATION; INHERITANCE; STATES; LYSINE-36; RECRUITS; BINDING; DIRECTS;
D O I
10.1038/emboj.2012.221
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Rpd3S histone deacetylase complex represses cryptic transcription initiation within coding regions by maintaining the hypo-acetylated state of transcribed chromatin. Rpd3S recognizes methylation of histone H3 at lysine 36 (H3K36me), which is required for its deacetylation activity. Rpd3S is able to function over a wide range of H3K36me levels, making this a unique system to examine how chromatin regulators tolerate the reduction of their recognition signal. Here, we demonstrated that Rpd3S makes histone modification-independent contacts with nucleosomes, and that Rpd3S prefers di-nucleosome templates since two binding surfaces can be readily accessed simultaneously. Importantly, this multivalent mode of interaction across two linked nucleosomes allows Rpd3S to tolerate a two-fold intramolecular reduction of H3K36me. Our data suggest that chromatin regulators utilize an intrinsic di-nucleosome-recognition mechanism to prevent compromised function when their primary recognition modifications are diluted. The EMBO Journal (2012) 31, 3564-3574. doi: 10.1038/emboj.2012.221; Published online 3 August 2012 Subject Categories: chromatin & transcription; proteins
引用
收藏
页码:3564 / 3574
页数:11
相关论文
共 50 条
  • [21] Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC
    Schmaehling, Sigrun
    Meiler, Arno
    Lee, Yoonjung
    Mohammed, Arif
    Finkl, Katja
    Tauscher, Katharina
    Israel, Lars
    Wirth, Marc
    Philippou-Massier, Julia
    Blum, Helmut
    Habermann, Bianca
    Imhof, Axel
    Song, Ji-Joon
    Mueller, Juerg
    DEVELOPMENT, 2018, 145 (07):
  • [22] Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation
    Zhang, Yinglu
    Shan, Chun-Min
    Wang, Jiyong
    Bao, Kehan
    Tong, Liang
    Jia, Songtao
    SCIENTIFIC REPORTS, 2017, 7
  • [23] PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum
    Lubin Jiang
    Jianbing Mu
    Qingfeng Zhang
    Ting Ni
    Prakash Srinivasan
    Kempaiah Rayavara
    Wenjing Yang
    Louise Turner
    Thomas Lavstsen
    Thor G. Theander
    Weiqun Peng
    Guiying Wei
    Qingqing Jing
    Yoshiyuki Wakabayashi
    Abhisheka Bansal
    Yan Luo
    José M. C. Ribeiro
    Artur Scherf
    L. Aravind
    Jun Zhu
    Keji Zhao
    Louis H. Miller
    Nature, 2013, 499 : 223 - 227
  • [24] Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape.
    Lu, Chao
    Jain, Siddhant
    Hoelper, Dominik
    Bechet, Denise
    Ran, Leili
    Andrulis, Irene
    Dickson, Brendan
    Majewski, Jacek
    Thompson, Craig
    Chi, Ping
    Garcia, Benjamin
    Jabado, Nada
    Lewis, Peter
    Allis, C. David
    CLINICAL CANCER RESEARCH, 2018, 24 (02) : 33 - 33
  • [25] Histone H3K4 and K36 Methylation, Chd1 and Rpd3S Oppose the Functions of Saccharomyces cerevisiae Spt4-Spt5 in Transcription
    Quan, Tiffani Kiyoko
    Hartzog, Grant Ashley
    GENETICS, 2010, 184 (02) : 321 - U29
  • [26] Histone H3.3 G34 Mutations Alter Histone H3K36 and H3K27 Methylation In Cis
    Shi, Leilei
    Shi, Jiejun
    Shi, Xiaobing
    Li, Wei
    Wen, Hong
    JOURNAL OF MOLECULAR BIOLOGY, 2018, 430 (11) : 1562 - 1565
  • [27] Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae
    Sorenson, Matthew R.
    Jha, Deepak K.
    Ucles, Stefanie A.
    Flood, Danielle M.
    Strahl, Brian D.
    Stevens, Scott W.
    Kress, Tracy L.
    RNA BIOLOGY, 2016, 13 (04) : 412 - 426
  • [28] Domain Model Explains Propagation Dynamics and Stability of Histone H3K27 and H3K36 Methylation Landscapes
    Alabert, Constance
    Loos, Carolin
    Voelker-Albert, Moritz
    Graziano, Simona
    Forne, Ignasi
    Reveron-Gomez, Nazaret
    Schuh, Lea
    Hasenauer, Jan
    Marr, Carsten
    Imhof, Axel
    Groth, Anja
    CELL REPORTS, 2020, 30 (04): : 1223 - +
  • [29] Unique and Shared Roles for Histone H3K36 Methylation States in Transcription Regulation Functions
    DiFiore, Julia, V
    Ptacek, Travis S.
    Wang, Yi
    Li, Bing
    Simon, Jeremy M.
    Strahl, Brian D.
    CELL REPORTS, 2020, 31 (10):
  • [30] Structure-function relationship of ASH1L and histone H3K36 and H3K4 methylation
    Vann, Kendra R.
    Sharma, Rajal
    Hsu, Chih-Chao
    Devoucoux, Maeva
    Tencer, Adam H.
    Zeng, Lei
    Lin, Kevin
    Zhu, Li
    Li, Qin
    Lachance, Catherine
    Ospina, Ruben Rosas
    Tong, Qiong
    Cheung, Ka Lung
    Yang, Shuai
    Biswas, Soumi
    Xuan, Hongwen
    Gatchalian, Jovylyn
    Alamillo, Lorena
    Wang, Jianlong
    Jang, Suk Min
    Klein, Brianna J.
    Lu, Yue
    Ernst, Patricia
    Strahl, Brian D.
    Rothbart, Scott B.
    Walsh, Martin J.
    Cleary, Michael L.
    Cote, Jacques
    Shi, Xiaobing
    Zhou, Ming-Ming
    Kutateladze, Tatiana G.
    NATURE COMMUNICATIONS, 2025, 16 (01)