ASYNCHRONOUS SAMPLING AND RECONSTRUCTION OF SPARSE SIGNALS

被引:0
|
作者
Can, Azime [1 ]
Sejdic, Ervin [1 ]
Chaparro, Luis [1 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
关键词
Continuous-time digital signal processing; time-encoding of signals; level-crossing sampling; asynchronous sigma delta modulators; asynchronous signal processing; TIME;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Asynchronous signal processing is an appropriate low-power approach for the processing of bursty signals typical in biomedical applications and sensing networks. Different from the synchronous processing, based on the Shannon-Nyquist sampling theory, asynchronous processing is free of aliasing constrains and quantization error, while allowing continuous-time processing. In this paper we connect level-crossing sampling with time-encoding using asynchronous sigma delta modulators, to develop an asynchronous decomposition procedure similar to the Haar transform wavelet decomposition. Our procedure provides a way to reconstruct bounded signals, not necessarily band-limited, from related zero-crossings, and it is especially applicable to decompose sparse signals in time and to denoise them. Actual and synthetic signals are used to illustrate the advantages of the decomposer.
引用
收藏
页码:854 / 858
页数:5
相关论文
共 50 条
  • [31] Reconstruction of Finite-Valued Sparse Signals
    Keiper, Sandra
    Kutyniok, Gitta
    Lee, Dae Gwan
    Pfander, Goetz
    [J]. WAVELETS AND SPARSITY XVII, 2017, 10394
  • [32] Computationally Efficient Sparse Reconstruction of Underwater Signals
    Sabna, N.
    Supriya, M. H.
    Pillai, P. R. Saseendran
    [J]. 2013 OCEAN ELECTRONICS (SYMPOL), 2013, : 88 - 95
  • [33] Sudocodes -: Fast measurement and reconstruction of sparse signals
    Sarvotham, Shriram
    Baron, Dror
    Baraniuk, Richard G.
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2804 - +
  • [34] Fast sparse reconstruction algorithm for multidimensional signals
    Qiu, Wei
    Zhou, Jianxiong
    Zhao, Hong Zhong
    Fu, Qiang
    [J]. ELECTRONICS LETTERS, 2014, 50 (22) : 1583 - 1584
  • [35] Compressed Sensing Reconstruction of Convolved Sparse Signals
    Tsagkatakis, Grigorios
    Tsakalides, Panagiotis
    Woiselle, Arnaud
    Bousquet, Marc
    Tzagkarakis, George
    Starck, Jean-Luc
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [36] Reconstruction of sparse signals via neurodynamic optimization
    Guocheng Li
    Zheng Yan
    [J]. International Journal of Machine Learning and Cybernetics, 2019, 10 : 15 - 26
  • [37] Sparse sampling photoacoustic reconstruction with a graph regularization group sparse dictionary
    Wang, Xiaoxue
    Zhang, Zhimin
    Shan, Shihao
    Wildgruber, Moritz
    Liu, Nian
    Cheng, Qiyuan
    Ma, Xiaopeng
    [J]. APPLIED OPTICS, 2024, 63 (20) : 5292 - 5302
  • [38] Sparse Reconstruction and Damage Imaging Method Based on Uniform Sparse Sampling
    Pengfei Li
    Ying Luo
    Kan Feng
    Yang Zhou
    Chenguang Xu
    [J]. Acta Mechanica Solida Sinica, 2020, 33 : 744 - 755
  • [39] Sparse Reconstruction and Damage Imaging Method Based on Uniform Sparse Sampling
    Li, Pengfei
    Luo, Ying
    Feng, Kan
    Zhou, Yang
    Xu, Chenguang
    [J]. ACTA MECHANICA SOLIDA SINICA, 2020, 33 (06) : 744 - 755
  • [40] Reconstruction of Periodic Signals From Asynchronous Trains of Samples
    Rupniewski, Marek W.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 289 - 293