Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium

被引:17
|
作者
Harbour, L. [1 ,2 ]
Dharma-Wardana, M. W. C. [3 ]
Klug, D. D. [3 ]
Lewis, L. J. [1 ,2 ]
机构
[1] Univ Montreal, Dept Phys, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Regrp Quebecois Mat Pointe, CP 6128,Succursale Ctr Ville, Montreal, PQ H3C 3J7, Canada
[3] Natl Res Council Canada, Ottawa, ON K1A 0R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
EQUATION-OF-STATE; CLASSICAL LIQUIDS; SIMPLE METAL; ENERGY; RESISTIVITY; PLASMAS;
D O I
10.1103/PhysRevE.94.053211
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Theory of X-ray Thomson scattering in dense plasmas
    Redmer, R
    Reinholz, H
    Röpke, G
    Thiele, R
    Höll, A
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2005, 33 (01) : 77 - 84
  • [22] Ultrabright X-ray laser scattering for dynamic warm dense matter physics
    Fletcher, L. B.
    Lee, H. J.
    Doeppner, T.
    Galtier, E.
    Nagler, B.
    Heimann, P.
    Fortmann, C.
    LePape, S.
    Ma, T.
    Millot, M.
    Pak, A.
    Turnbull, D.
    Chapman, D. A.
    Gericke, D. O.
    Vorberger, J.
    White, T.
    Gregori, G.
    Wei, M.
    Barbrel, B.
    Falcone, R. W.
    Kao, C. -C.
    Nuhn, H.
    Welch, J.
    Zastrau, U.
    Neumayer, P.
    Hastings, J. B.
    Glenzer, S. H.
    NATURE PHOTONICS, 2015, 9 (04) : 274 - 279
  • [23] First-principles method for x-ray Thomson scattering including both elastic and inelastic features in warm dense matter
    Mo, Chongjie
    Fu, Zhen-Guo
    Zhang, Ping
    Kang, Wei
    Zhang, Weiyan
    He, X. T.
    PHYSICAL REVIEW B, 2020, 102 (19)
  • [24] X-ray absorption for the study of warm dense matter
    Levy, A.
    Dorchies, F.
    Harmand, M.
    Fourment, C.
    Hulin, S.
    Peyrusse, O.
    Santos, J. J.
    Antici, P.
    Audebert, P.
    Fuchs, J.
    Lancia, L.
    Mancic, A.
    Nakatsutsumi, M.
    Mazevet, S.
    Recoules, V.
    Renaudin, P.
    Fourmaux, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
  • [25] X-ray scattering from warm dense iron
    White, S.
    Nersisyan, G.
    Kettle, B.
    Dzelzainis, T. W. J.
    McKeever, K.
    Lewis, C. L. S.
    Otten, A.
    Siegenthaler, K.
    Kraus, D.
    Roth, M.
    White, T.
    Gregori, G.
    Gericke, D. O.
    Baggott, R.
    Chapman, D. A.
    Wuensch, K.
    Vorberger, J.
    Riley, D.
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (03) : 573 - 577
  • [26] First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter
    Mo, Chongjie
    Fu, Zhenguo
    Kang, Wei
    Zhang, Ping
    He, X. T.
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [27] Theoretical treatments of the bound-free contribution and experimental best practice in X-ray Thomson scattering from warm dense matter
    Mattern, Brian A.
    Seidler, Gerald T.
    PHYSICS OF PLASMAS, 2013, 20 (02)
  • [28] X-ray Thomson Scattering Measurement in shock-compressed Beryllium
    Lee, H. J.
    Doeppner, T.
    Neumayer, P.
    Castor, J.
    Falcone, R. W.
    Fortmann, C.
    Hammel, B. A.
    Kritcher, A. L.
    Landen, O. L.
    Lee, R. W.
    Meyerhofer, D. D.
    Munro, D. H.
    Redmer, R.
    Regan, S. P.
    Weber, S.
    Wallace, R.
    Glenzer, S. H.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
  • [29] Demonstration of x-ray Thomson scattering using picosecond K-α x-ray sources in the characterization of dense heated matter
    Kritcher, A. L.
    Neumayer, P.
    Lee, H. J.
    Doeppner, T.
    Falcone, R. W.
    Glenzer, S. H.
    Morse, E. C.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [30] Toward using collective x-ray Thomson scattering to study C-H demixing and hydrogen metallization in warm dense matter conditions
    Ranjan, D.
    Ramakrishna, K.
    Voigt, K.
    Humphries, O. S.
    Heuser, B.
    Stevenson, M. G.
    Luetgert, J.
    He, Z.
    Qu, C.
    Schumacher, S.
    May, P. T.
    Amouretti, A.
    Appel, K.
    Brambrink, E.
    Cerantola, V.
    Chekrygina, D.
    Fletcher, L. B.
    Goede, S.
    Harmand, M.
    Hartley, N. J.
    Hau-Riege, S. P.
    Makita, M.
    Pelka, A.
    Schuster, A. K.
    Smid, M.
    Toncian, T.
    Zhang, M.
    Preston, T. R.
    Zastrau, U.
    Vorberger, J.
    Kraus, D.
    PHYSICS OF PLASMAS, 2023, 30 (05)