Predicting Yarn Unevenness Using RBF Neural Network

被引:0
|
作者
Li Huijun [1 ]
Wang Xinhou [1 ]
机构
[1] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
关键词
RBF; CV value; knots; NEPS;
D O I
暂无
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The objective of this research is to predict yarn unevenness. The model of predicting yam unevenness is built based on standard RBF neural network. The RBF neural networks are trained with HVI test results of cotton and USTER TENSOJET 5-S400 test results of yarn. The results show prediction models based on RBF neural network are very precise and efficient.
引用
收藏
页码:971 / 973
页数:3
相关论文
共 50 条
  • [31] RBF Neural network based on ART neural network
    Meng, Xi
    Qiao, Jun-Fei
    Han, Hong-Gui
    [J]. Kongzhi yu Juece/Control and Decision, 2014, 29 (10): : 1876 - 1880
  • [32] Analysis of yarn unevenness by using a digital-signal-processing technique
    Rong, GH
    Slater, K
    [J]. JOURNAL OF THE TEXTILE INSTITUTE, 1995, 86 (04) : 590 - 599
  • [33] Predicting Spatial Distribution of Redroot Pigweed (Amaranthus retroflexus L.) using the RBF Neural Network Model
    Sharghi, A. R. Fakoor
    Makarian, H.
    Shadmehri, A. Derakhshan
    Rohani, A.
    Abbasdokht, H.
    [J]. JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2018, 20 : 1493 - 1504
  • [34] A method for predicting nonlinear time series using RBF (Radial Base Function) neural network and its application
    Zhang, C.-B.
    Deng, Z.-L.
    [J]. 2001, Harbin Research Institute (16):
  • [35] Predicting the unevenness of polyester/viscose blended open-end rotor spun yarns using artificial neural network and statistical models
    Oğuz Demiryürek
    Erdem Koç
    [J]. Fibers and Polymers, 2009, 10 : 237 - 245
  • [36] Predicting the unevenness of polyester/viscose blended open-end rotor spun yarns using artificial neural network and statistical models
    Demiryurek, Oguz
    Koc, Erdem
    [J]. FIBERS AND POLYMERS, 2009, 10 (02) : 237 - 245
  • [37] Structure selection of RBF neural network using information criteria
    Hatanaka, T
    Uosaki, K
    Kuroda, T
    [J]. KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 166 - 170
  • [38] Control of Lorenz chaos using evolutionary RBF neural network
    Weng, M.F.
    [J]. Xiaoxing Weixing Jisuanji Xitong/Mini-Micro Systems, 2001, 22 (08):
  • [39] Measuring the unevenness of yarn apparent diameter from yarn sequence images
    Li, Zhongjian
    Pan, Ruru
    Zhang, Jie
    Li, Bianbian
    Gao, Weidong
    Bao, Wei
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (01)
  • [40] Using RBF neural network for optimum control of a cold storage
    Shi, Guodong
    Wang, Qihong
    Xu, Yan
    Xue, Guoxin
    [J]. 2000, Journal of Systems Engineering and Electronics, Changsha, China (11)