Structure Principles of CRISPR-Cas Surveillance and Effector Complexes

被引:17
|
作者
Tsui, Tsz Kin Martin [1 ]
Li, Hong
机构
[1] Florida State Univ, Inst Mol Biophys, Tallahassee, FL 32306 USA
来源
关键词
DNA interference; RNA silencing; ribonucleoprotein particles; prokaryote immunity; RNA-SILENCING COMPLEX; ANTIVIRAL DEFENSE; CRYSTAL-STRUCTURE; IMMUNE-SYSTEM; INTERFERENCE COMPLEX; ADAPTIVE IMMUNITY; DNA ENDONUCLEASE; CMR COMPLEX; DUAL-RNA; CLEAVAGE;
D O I
10.1146/annurev-biophys-060414-033939
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The pathway of CRISPR-Cas immunity redefines the roles of RNA in the flow of genetic information and ignites excitement for next-generation gene therapy tools. CRISPR-Cas machineries offer a fascinating set of new enzyme assemblies from which one can learn principles of molecular interactions and chemical activities. The interference step of the CRISPR-Cas immunity pathway congregates proteins, RNA, and DNA into a single molecular entity that selectively destroys invading nucleic acids. Although much remains to be discovered, a picture of how the interference process takes place is emerging. This review focuses on the current structural data for the three known types of RNA-guided nucleic acid interference mechanisms. In it, we describe key features of individual complexes and we emphasize comparisons across types and along functional stages. We aim to provide readers with a set of core principles learned from the three types of interference complexes and a deep appreciation of the diversity among them.
引用
收藏
页码:229 / 255
页数:27
相关论文
共 50 条
  • [41] CRISPR-Cas: Adapting to change
    Jackson, Simon A.
    McKenzie, Rebecca E.
    Fagerlund, Robert D.
    Kieper, Sebastian N.
    Fineran, Peter C.
    Brouns, Stan J. J.
    SCIENCE, 2017, 356 (6333)
  • [42] CRISPR-Cas immunity in prokaryotes
    Marraffini, Luciano A.
    NATURE, 2015, 526 (7571) : 55 - 61
  • [43] CRISPR-Cas in Streptococcus pyogenes
    Le Rhun, Anais
    Escalera-Maurer, Andres
    Bratovic, Majda
    Charpentier, Emmanuelle
    RNA BIOLOGY, 2019, 16 (04) : 380 - 389
  • [44] CRISPR-Cas Systems in Prokaryotes
    Burmistrz, Michal
    Pyrc, Krzysztof
    POLISH JOURNAL OF MICROBIOLOGY, 2015, 64 (03) : 193 - 202
  • [45] CRISPR-Cas goes RNA
    Larochelle, Stephane
    NATURE METHODS, 2018, 15 (05) : 312 - 312
  • [46] Adaptation in CRISPR-Cas Systems
    Sternberg, Samuel H.
    Richter, Hagen
    Charpentier, Emmanuelle
    Qimron, Udi
    MOLECULAR CELL, 2016, 61 (06) : 797 - 808
  • [47] Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria
    Pattharaprachayakul, Napisa
    Lee, Mieun
    Incharoensakdi, Aran
    Woo, Han Min
    ENZYME AND MICROBIAL TECHNOLOGY, 2020, 140
  • [48] Mechanistic and evolutionary insights into a type V-M CRISPR-Cas effector enzyme
    Omura, Satoshi N.
    Nakagawa, Ryoya
    Sudfeld, Christian
    Warren, Ricardo Villegas
    Wu, Wen Y.
    Hirano, Hisato
    Laffeber, Charlie
    Kusakizako, Tsukasa
    Kise, Yoshiaki
    Lebbink, Joyce H. G.
    Itoh, Yuzuru
    van der Oost, John
    Nureki, Osamu
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2023, 30 (08) : 1172 - +
  • [49] Structure of an RNA Silencing Complex of the CRISPR-Cas Immune System
    Spilman, Michael
    Cocozaki, Alexis
    Hale, Caryn
    Shao, Yaming
    Ramia, Nancy
    Terns, Rebeca
    Terns, Michael
    Li, Hong
    Stagg, Scott
    MOLECULAR CELL, 2013, 52 (01) : 146 - 152
  • [50] The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase
    van Beljouw, Sam P. B.
    Haagsma, Anna C.
    Rodriguez-Molina, Alicia
    van den Berg, Daan F.
    Vink, Jochem N. A.
    Brouns, Stan J. J.
    SCIENCE, 2021, 373 (6561) : 1349 - +