Inverse design of anisotropic spinodoid materials with prescribed diffusivity

被引:9
|
作者
Roding, Magnus [1 ,2 ,3 ]
Skarstrom, Victor Wahlstrand [4 ]
Loren, Niklas [1 ,5 ]
机构
[1] RISE Res Inst Sweden Bioecon & Hlth, Agr & Food, S-41276 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
[3] Univ Gothenburg, S-41296 Gothenburg, Sweden
[4] Univ Gothenburg, Dept Literature Hist Ideas & Relig, S-40530 Gothenburg, Sweden
[5] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
APPROXIMATE BAYESIAN COMPUTATION; GAUSSIAN RANDOM-FIELDS; NEURAL-NETWORKS; MONTE-CARLO; MICROSTRUCTURE;
D O I
10.1038/s41598-022-21451-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The three-dimensional microstructure of functional materials determines its effective properties, like the mass transport properties of a porous material. Hence, it is desirable to be able to tune the properties by tuning the microstructure accordingly. In this work, we study a class of spinodoid i.e. spinodal decomposition-like structures with tunable anisotropy, based on Gaussian random fields. These are realistic yet computationally efficient models for bicontinuous porous materials. We use a convolutional neural network for predicting effective diffusivity in all three directions. We demonstrate that by incorporating the predictions of the neural network in an approximate Bayesian computation framework for inverse problems, we can in a computationally efficient manner design microstructures with prescribed diffusivity in all three directions.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Effect of charge and anisotropic diffusivity on ion exchange kinetics in nuclear waste form materials
    Li, Yulan
    Hu, Shenyang
    Montgomery, Robert
    Grandjean, Agnes
    Besmann, Theodore
    Loye, Hans-Conrad zur
    JOURNAL OF NUCLEAR MATERIALS, 2022, 572
  • [32] Constant Velocity Flying Spot for the estimation of in-plane thermal diffusivity on anisotropic materials
    Gaverina, L.
    Bensalem, M.
    Bedoya, A.
    Gonzalez, J.
    Sommier, A.
    Battaglia, J. L.
    Salazar, A.
    Mendioroz, A.
    Oleaga, A.
    Batsale, J. C.
    Pradere, C.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2019, 145
  • [33] Identification of the damage parameters for anisotropic materials by inverse technique: application to an aluminium
    Lauro, F
    Bennani, B
    Croix, P
    Oudin, J
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 118 (1-3) : 472 - 477
  • [34] Inverse design in search of materials with target functionalities
    Alex Zunger
    Nature Reviews Chemistry, 2
  • [35] Benchmarking inverse optimization algorithms for materials design
    Zhai, Hanfeng
    Hao, Hongxia
    Yeo, Jingjie
    APL MATERIALS, 2024, 12 (02)
  • [36] INVERSE DESIGN OF DIELECTRIC MATERIALS BY TOPOLOGY OPTIMIZATION
    Otomori, M.
    Andkjaer, J.
    Sigmund, O.
    Izui, K.
    Nishiwaki, S.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 127 : 93 - 120
  • [37] Inverse design in search of materials with target functionalities
    Zunger, Alex
    NATURE REVIEWS CHEMISTRY, 2018, 2 (04)
  • [38] Equilibrium learning: Inverse design of intelligent mechanical machines for prescribed behavior control
    Chen, Jiaji
    Miao, Xuanbo
    Ma, Hongbin
    Huang, Guoliang
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII, 2024, 12946
  • [39] Transmissivity and diffusivity variation in the anisotropic aquifers
    Pasarica, I
    NEW APPROACHES CHARACTERIZING GROUNDWATER FLOW, VOLS 1 AND 2, 2001, : 855 - 858
  • [40] Critical thermal diffusivity in anisotropic magnets
    Pawlak, A
    PHYSICAL REVIEW B, 2003, 68 (09):