Tail conditional expectation for multivariate distributions: A game theory approach

被引:6
|
作者
Abbasi, Babak [1 ]
Hosseinifard, S. Zahra [1 ]
机构
[1] RMIT Univ, Sch Math & Geospatial Sci, Melbourne, Vic 3001, Australia
关键词
Tail conditional expectation; Shapley values; Coherent risk; Multivariate distributions; RISK; DECOMPOSITION; MODELS;
D O I
10.1016/j.spl.2013.06.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes using the Shapley values in allocating the total tail conditional expectation (TCE) to each business line (X-j, j = 1,..., n) when there are n correlated business lines. The joint distributions of X-j and S (S = X-1 + X-2 ... + X-n) are needed in the existing methods, but they are not required in the proposed method. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2228 / 2235
页数:8
相关论文
共 50 条
  • [41] Characterization of Continuous Distributions through Conditional Expectation of Function of Generalized Order Statistics: An Alternative Approach
    Khan, A. H.
    Khan, M. J. S.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 21 (J11): : 52 - 59
  • [42] A multivariate tail covariance measure for elliptical distributions
    Landsman, Zinoviy
    Makov, Udi
    Shushi, Tomer
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2018, 81 : 27 - 35
  • [43] MULTIVARIATE NEW BETTER THAN USED IN EXPECTATION DISTRIBUTIONS
    BASU, AP
    EBRAHIMI, N
    [J]. STATISTICS & PROBABILITY LETTERS, 1986, 4 (06) : 295 - 301
  • [44] Multivariate saddlepoint approximations in tail probability and conditional inference
    Kolassa, John
    Li, Jixin
    [J]. BERNOULLI, 2010, 16 (04) : 1191 - 1207
  • [45] New multivariate orderings based on conditional distributions
    Belzunce, Felix
    Mulero, Julio
    Ruiz, Jose M.
    Suarez-Llorens, Alfonso
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2012, 28 (05) : 467 - 484
  • [46] CONDITIONAL SPECIFICATIONS OF MULTIVARIATE PARETO AND STUDENT DISTRIBUTIONS
    WESOLOWSKI, J
    AHSANULLAH, M
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (04) : 1023 - 1031
  • [47] Bayesian Mixture Modeling for Multivariate Conditional Distributions
    DeYoreo, Maria
    Reiter, Jerome P.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2020, 14 (03)
  • [48] Numerical method for estimating multivariate conditional distributions
    Stützle, EA
    Hrycej, T
    [J]. COMPUTATIONAL STATISTICS, 2005, 20 (01) : 151 - 176
  • [49] Numerical method for estimating multivariate conditional distributions
    Eric A. Sützle
    Tomas Hrycej
    [J]. Computational Statistics, 2005, 20 : 151 - 176
  • [50] Bayesian Mixture Modeling for Multivariate Conditional Distributions
    Maria DeYoreo
    Jerome P. Reiter
    [J]. Journal of Statistical Theory and Practice, 2020, 14