Sustainable energy design of cruise ships through dynamic simulations: Multi-objective optimization for waste heat recovery

被引:53
|
作者
Barone, Giovanni [1 ]
Buonomano, Annamaria [1 ,2 ]
Forzano, Cesare [3 ]
Palombo, Adolfo [1 ]
Vicidomini, Maria [1 ]
机构
[1] Univ Naples Federico II, Dept Ind Engn, Ple Tecchio 80, I-80125 Naples, Italy
[2] Concordia Univ, Dept Bldg Civil & Environm Engn, 1455 DC Maisonneuve Blvd W, Montreal, PQ, Canada
[3] Free Univ Bozen Bolzano, Fac Sci & Technol, Piazza Univ 5, I-39100 Bozen Bolzano, Italy
关键词
Dynamic simulation energy performance simulation; Thermo-economic optimization; Heat recovery; Cruise ships; COOLING SYSTEM; FUEL-CELL; REFRIGERATION; POWER; EMISSIONS; CONSUMPTION;
D O I
10.1016/j.enconman.2020.113166
中图分类号
O414.1 [热力学];
学科分类号
摘要
Modern cruise ships are energivorous systems and their design is challenging due to stringent restrictions on the environmental impact recently imposed by the International Maritime Organization. Nowadays, energy saving technologies and strategies for ships can be selected and analysed by means of system dynamic simulations. In this paper this innovative goal is obtained through TRNSYS where the ship-envelope and the related energy system are modelled and simulated by means of new customized weather data with the aim to optimize the system energy performance by considering different objective function (maximum energy saving, minimum payback, etc.). To show the effectiveness of the proposed approach, a novel case study is presented. It refers to a modern cruise ship fuelled by liquefied natural gas cruising in Mediterranean and Caribbean seas. Novel hourly weather files are developed for accounting actual locations and orientations of the moving ship. Low-, mediumand high-temperature engines waste heat recoveries are exploited for supplying different thermally activated energy saving devices. Results of the conducted optimization procedure show significant reductions of fuel consumption (between 0.1 and 1.9 kt/y), operating costs (up to 615 k(sic)/y), and pollutant emissions with respect to traditional systems. Short paybacks are obtained (lower than 5 years), depending on the considered innovative system layouts. Finally, useful design and operating criteria for ship manufacturers and users are provided.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Waste Minimization Through Process Integration and Multi-objective Optimization
    高瑛
    石磊
    姚平经
    ChineseJournalofChemicalEngineering, 2001, (03) : 43 - 48
  • [22] Waste minimization through process integration and multi-objective optimization
    Gao, Y
    Shi, L
    Yao, PJ
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2001, 9 (03) : 267 - 272
  • [23] A Procedure to Perform Multi-Objective Optimization for Sustainable Design of Buildings
    Brunelli, Cristina
    Castellani, Francesco
    Garinei, Alberto
    Biondi, Lorenzo
    Marconi, Marcello
    ENERGIES, 2016, 9 (11)
  • [24] An interactive multi-objective optimization framework for sustainable design of bioprocesses
    Taras, Sandu
    Woinaroschy, Alexandru
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 10 - 22
  • [25] The multi-objective optimization model for a sustainable manufacturing system design
    Nujoom, Reda
    Mohammed, Ahmed
    Wang, Qian
    Bennett, Nick
    2016 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2016, : 1134 - 1140
  • [26] Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit
    Behzadi, Amirmohammad
    Gholamian, Ehsan
    Houshfar, Ehsan
    Habibollahzade, Ali
    ENERGY, 2018, 160 : 1055 - 1068
  • [27] MULTI-OBJECTIVE DESIGN OPTIMIZATION OF CRASH ENERGY ABSORBERS
    Kamel, Hesham
    INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 11, 2013, : 177 - 182
  • [28] Multi-objective optimization design of condenser in an organic Rankine cycle for low grade waste heat recovery using evolutionary algorithm
    Wang, Jiangfeng
    Wang, Man
    Li, Maoqing
    Xia, Jiaxi
    Dai, Yiping
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 45 : 47 - 54
  • [29] Optimization of a building energy performance by a multi-objective optimization, using sustainable energy combinations
    Li, Xiaoyan
    Rodriguez, Dragan
    EVOLVING SYSTEMS, 2021, 12 (04) : 949 - 963
  • [30] Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine
    Yang, Fubin
    Zhang, Hongguang
    Song, Songsong
    Bei, Chen
    Wang, Hongjin
    Wang, Enhua
    ENERGY, 2015, 93 : 2208 - 2228