PARAREAL CONVERGENCE FOR OSCILLATORY PDEs WITH FINITE TIME-SCALE SEPARATION

被引:9
|
作者
Peddle, Adam G. [1 ]
Haut, Terry [2 ]
Wingate, Beth [1 ]
机构
[1] Univ Exeter, CEMPS, Exeter EX4 4QF, Devon, England
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2019年 / 41卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
parareal; parallel in time; wave averaging; oscillatory stiffness; time-scale separation; SINGULAR LIMITS; PARALLEL; DISCRETIZATION; ALGORITHM;
D O I
10.1137/17M1131611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [SIAM J. Sci. Comput., 36 (2014), pp. A693-A713] the authors present a new coarse propagator for the parareal method applied to oscillatory PDEs that exhibit time-scale separation and show, under certain regularity constraints, superlinear convergence which leads to significant parallel speedups over standard parareal methods. The error bound depends on the degree of time-scale separation, epsilon, and the coarse time step, Delta T, and relies on a bound that holds only in the limit of small epsilon. The main result of the present paper is a generalization of this error bound that also holds for finite values of epsilon, which can be important for applications in the absence of scale separation. The new error bound is found to depend on an additional parameter, eta, the averaging window used in the nonlinear term of the coarse propagator. The new proof gives insight into how the parareal method can converge even for finite values of epsilon. It is also a significant technical advance over the proof presented in [SIAM J. Sci. Comput., 36 (2014), pp. A693-A713]; it requires the introduction of a stiffness regulator function that allows us to control the oscillatory stiffness in the nonlinear term. The new convergence concepts developed in the new proof are confirmed using numerical simulations.
引用
收藏
页码:A3476 / A3497
页数:22
相关论文
共 50 条
  • [41] NATURE TIME-SCALE
    FREMLIN, JH
    MCCORMIC.NG
    NATURE, 1966, 211 (5053) : 1107 - &
  • [42] Resonant controller design by time-scale separation method for a voltage inverter
    Vavilov, Oleg A.
    Yurkevich, Valery D.
    Korobkov, Dmitry V.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2023, (63): : 4 - 15
  • [43] Exact dynamical coarse-graining without time-scale separation
    Lu, Jianfeng
    Vanden-Eijnden, Eric
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (04):
  • [44] Time-scale separation and state aggregation in singularly perturbed switching diffusions
    Yin, G
    Kniazeva, M
    CONTROL OF DISTRIBUTED PARAMETER AND STOCHASTIC SYSTEMS, 1999, 13 : 299 - 306
  • [45] Least-rattling feedback from strong time-scale separation
    Chvykov, Pavel
    England, Jeremy
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [46] Time-Scale Separation from Diffusion-Mapped Delay Coordinates
    Berry, T.
    Cressman, J. R.
    Greguric-Ferencek, Z.
    Sauer, T.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02): : 618 - 649
  • [47] Numerical Time-Scale Separation for Rotorcraft Nonlinear Optimal Control Analyses
    Kim, Chang-Joo
    Sung, Sangkyung
    Park, Soo Hyung
    Jung, Sung Nam
    Park, Tae San
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2014, 37 (02) : 658 - 673
  • [48] On the convergence of the critical cooling time-scale for the fragmentation of self-gravitating discs
    Meru, Farzana
    Bate, Matthew R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (03) : 2022 - 2046
  • [49] CONVERGENCE ANALYSIS OF THE PARAREAL ALGORITHM WITH NONUNIFORM FINE TIME GRID
    Wu, Shu-lin
    Zhou, Tao
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (05) : 2308 - 2330
  • [50] Bifurcation analysis of calcium oscillations: Time-scale separation, canards, and frequency lowering
    Schuster, S
    Marhl, M
    JOURNAL OF BIOLOGICAL SYSTEMS, 2001, 9 (04) : 291 - 314