Pseudorandom generators from one-way functions: A simple construction for any hardness

被引:0
|
作者
Holenstein, Thomas [1 ]
机构
[1] ETH, Dept Comp Sci, CH-8092 Zurich, Switzerland
来源
THEORY OF CRYPTOGRAPHY, PROCEEDINGS | 2006年 / 3876卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a seminal paper, Hastad, Impagliazzo, Levin, and Luby showed that pseudorandom generators exist if and only if one-way functions exist. The construction they propose to obtain a pseudorandom generator from an n-bit one-way function uses 0(n(8)) random bits in the input (which is the most important complexity measure of such a construction). In this work we study how much this can be reduced if the one-way function satisfies a stronger security requirement. For example, we show how to obtain a pseudorandom generator which satisfies a standard notion of security using only O(n(4) log(2)(n)) bits of randomness if a one-way function with exponential security is given, i.e., a one-way function for which no polynomial time algorithm has probability higher than 2(-cn) in inverting for some constant c. Using the uniform variant of Impagliazzo's hard-core lemma given in [7] our constructions and proofs axe self-contained within this paper, and as a special case of our main theorem, we give the first explicit description of the most efficient construction from [6].
引用
收藏
页码:443 / 461
页数:19
相关论文
共 50 条
  • [41] Physical one-way functions
    Pappu, R
    Recht, R
    Taylor, J
    Gershenfeld, N
    SCIENCE, 2002, 297 (5589) : 2026 - 2030
  • [42] The Tale of One-Way Functions
    L. A. Levin
    Problems of Information Transmission, 2003, 39 (1) : 92 - 103
  • [43] ONE-WAY HASH FUNCTIONS
    SCHNEIER, B
    DR DOBBS JOURNAL, 1991, 16 (09): : 148 - 150
  • [44] Separability and one-way functions
    Fortnow, L
    Rogers, JD
    COMPUTATIONAL COMPLEXITY, 2002, 11 (3-4) : 137 - 157
  • [45] On complete one-way functions
    Kozhevnikov, A. A.
    Nikolenko, S. I.
    PROBLEMS OF INFORMATION TRANSMISSION, 2009, 45 (02) : 168 - 183
  • [46] On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness
    Brzuska, Chris
    Couteau, Geoffroy
    JOURNAL OF CRYPTOLOGY, 2025, 38 (01)
  • [47] Fractional pseudorandom generators from any Fourier level
    Department of Computer Science, Cornell University, Ithaca
    NY, United States
    不详
    NY, United States
    不详
    CA, United States
    不详
    CA, United States
    Leibniz Int. Proc. Informatics, LIPIcs,
  • [48] On Building Fine-Grained One-Way Functions from Strong Average-Case Hardness
    Brzuska, Chris
    Couteau, Geoffroy
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT II, 2022, 13276 : 584 - 613
  • [49] Construction of universal one-way hash functions: Tree hashing revisited
    Sarkar, Palash
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (16) : 2174 - 2180
  • [50] Cryptographic Hashing From Strong One-Way Functions
    Holmgren, Justin
    Lombardi, Alex
    2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2018, : 850 - 858