Belyi functions for hyperbolic hypergeometric-to-Heun transformations

被引:20
|
作者
van Hoeij, Mark [1 ]
Vidunas, Raimundas [2 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
基金
美国国家科学基金会;
关键词
Belyi functions; Heun functions; Pull-back transformations; ALGEBRAIC TRANSFORMATIONS; SHIMURA CURVES; COVERINGS;
D O I
10.1016/j.jalgebra.2015.06.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete classification of Belyi functions for transforming certain hypergeometric equations to Henn equations is given. The considered hypergeometric equations have the local exponent differences 1/k, 1/l, 1/m that satisfy k,l,m is an element of N and the hyperbolic condition 1/k + 1/l + 1/m < 1. There are 366 Galois orbits of Belyi functions giving the considered (non-parametric) hypergeometric-to-Heun pull-back transformations. Their maximal degree is 60, which is well beyond reach of standard computational methods. To obtain these Belyi functions, we developed two efficient algorithms that exploit the implied pull-back transformations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:609 / 659
页数:51
相关论文
共 50 条
  • [11] General linear transformations of hypergeometric functions
    Niukkanen, AV
    MATHEMATICAL NOTES, 2001, 70 (5-6) : 698 - 707
  • [12] Algebraic Transformations of Gauss Hypergeometric Functions
    Vidunas, Raimundas
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (02): : 139 - 180
  • [13] Certain transformations for multiple hypergeometric functions
    Chuanan Wei
    Xiaoxia Wang
    Yaqiong Li
    Advances in Difference Equations, 2013
  • [14] Certain transformations for multiple hypergeometric functions
    Wei, Chuanan
    Wang, Xiaoxia
    Li, Yaqiong
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [15] General Linear Transformations of Hypergeometric Functions
    A. V. Niukkanen
    Mathematical Notes, 2001, 70 : 698 - 707
  • [16] Certain Generalizations of Quadratic Transformations of Hypergeometric and Generalized Hypergeometric Functions
    Qureshi, Mohd Idris
    Choi, Junesang
    Shah, Tafaz Rahman
    SYMMETRY-BASEL, 2022, 14 (05):
  • [17] HYPERGEOMETRIC EXPANSIONS OF HEUN POLYNOMIALS
    KALNINS, EG
    MILLER, W
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) : 1450 - 1459
  • [18] Solutions of a Confluent Modification of the General Heun Equation in Terms of Generalized Hypergeometric Functions
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    Cesarano, C.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (12) : 5258 - 5265
  • [19] Expansions of the solutions to the confluent Heun equation in terms of the Kummer confluent hypergeometric functions
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    AIP ADVANCES, 2014, 4 (08):
  • [20] Solutions of a Confluent Modification of the General Heun Equation in Terms of Generalized Hypergeometric Functions
    T. A. Ishkhanyan
    A. M. Ishkhanyan
    C. Cesarano
    Lobachevskii Journal of Mathematics, 2023, 44 : 5258 - 5265