Belyi functions for hyperbolic hypergeometric-to-Heun transformations

被引:20
|
作者
van Hoeij, Mark [1 ]
Vidunas, Raimundas [2 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Tokyo 1138656, Japan
基金
美国国家科学基金会;
关键词
Belyi functions; Heun functions; Pull-back transformations; ALGEBRAIC TRANSFORMATIONS; SHIMURA CURVES; COVERINGS;
D O I
10.1016/j.jalgebra.2015.06.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete classification of Belyi functions for transforming certain hypergeometric equations to Henn equations is given. The considered hypergeometric equations have the local exponent differences 1/k, 1/l, 1/m that satisfy k,l,m is an element of N and the hyperbolic condition 1/k + 1/l + 1/m < 1. There are 366 Galois orbits of Belyi functions giving the considered (non-parametric) hypergeometric-to-Heun pull-back transformations. Their maximal degree is 60, which is well beyond reach of standard computational methods. To obtain these Belyi functions, we developed two efficient algorithms that exploit the implied pull-back transformations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:609 / 659
页数:51
相关论文
共 50 条