Antibacterial cotton fabrics treated with core-shell nanoparticles

被引:60
|
作者
Abdel-Mohsen, A. M. [1 ,2 ]
Abdel-Rahman, Rasha M. [1 ]
Hrdina, R. [1 ]
Imramovsky, Ales [1 ]
Burgert, Ladislav [3 ]
Aly, A. S. [2 ]
机构
[1] Univ Pardubice, Inst Organ Chem & Technol, Fac Chem Technol, CZ-53210 Pardubice, Czech Republic
[2] Natl Res Ctr, Text Res Div, Cairo 12311, Egypt
[3] Univ Pardubice, Inst Chem & Technol Macromol Mat, Fac Chem Technol, CZ-53210 Pardubice, Czech Republic
关键词
Core-shell nanoparticles; Cotton fabrics; Multifinishing; Medial textiles;
D O I
10.1016/j.ijbiomac.2012.03.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multifinishing treatment of cotton fabrics was carried out using core-shell nanoparticles that consists of silver nanoparticles (Ag-0) as core and chitosan-O-methoxy polyethylene glycol (CTS-O-MPEG) as shell. The synthesized (Ag-0-CTS-O-MPEG) core-shell nanoparticle was applied to cotton fabrics using the conventional pad-dry-cure method. The finished fabrics were examined for their morphological features and surface characteristics by making use of scanning electron microscope (SEM-EDX), which reveals the well dispersion of (Ag-0-CTS-O-MPEG) core-shell nanoparticles on cotton fabrics. Factors affecting the treatment such as core shell nanoparticles, citric acid (CA) concentration as well as curing temperature were studied. The treated fabrics, at optimum condition of 1% core shell nanoparticles, 5% citric acid, drying at 80 degrees C, curing at 160 degrees C for 2 min, showed excellent antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus), even after 20 washing cycles in addition to an enhancement in crease recovery angles (CRA) along with a slight improvement in tensile strength (TS). (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1245 / 1253
页数:9
相关论文
共 50 条
  • [21] Magnetic nanoparticles of core-shell structure
    Kalska-Szostko, B.
    Wykowska, U.
    Satula, D.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 481 : 527 - 536
  • [22] Core-shell assembled nanoparticles as catalysts
    Zhong, CJ
    Maye, MM
    ADVANCED MATERIALS, 2001, 13 (19) : 1507 - +
  • [23] Hydride destabilization in core-shell nanoparticles
    Pasquini, L.
    Sacchi, M.
    Brighi, M.
    Boelsma, C.
    Bals, S.
    Perkisas, T.
    Dam, B.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) : 2115 - 2123
  • [24] Chemical preparation of core-shell nanoparticles
    Kalska-Szostko, Beata
    Wykowska, Urszula
    Basa, Anna
    Szymanski, Krzysztof
    NUKLEONIKA, 2013, 58 (01) : 35 - 38
  • [25] Polymeric core-shell nanoparticles for therapeutics
    Yang, YY
    Wang, Y
    Powell, R
    Chan, P
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2006, 33 (5-6): : 557 - 562
  • [26] Magnetic thermoresponsive core-shell nanoparticles
    Gelbrich, T
    Feyen, M
    Schmidt, AM
    MACROMOLECULES, 2006, 39 (09) : 3469 - 3472
  • [27] Impact of core-shell dipolar interaction on magnetic phases of spherical core-shell nanoparticles
    Medeiros Filho, F. C.
    Oliveira, L. L.
    Pedrosa, S. S.
    Reboucas, G. O. G.
    Carrico, A. S.
    Dantas, Ana L.
    PHYSICAL REVIEW B, 2015, 92 (06)
  • [28] Synthesis, characterization and antibacterial effects of Ag@SiO2 core-shell nanoparticles
    Acharya D.
    Pandey P.
    Nasiri F.
    Singha K.M.
    Mohanta B.
    Journal of Bionanoscience, 2017, 11 (05): : 391 - 396
  • [29] Preparation and Antibacterial Properties of the Core-Shell Structure SiO2@Ag Nanoparticles
    Liu, Aixin
    Sun, Lei
    Zhao, Yanbao
    Zhang, Zhijun
    CURRENT NANOSCIENCE, 2012, 8 (06) : 861 - 867
  • [30] Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell
    Oh, Jong-Gil
    Kim, Hansung
    CURRENT APPLIED PHYSICS, 2013, 13 (01) : 130 - 136