Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of complex traits

被引:4
|
作者
Wu, Tian [1 ]
Liu, Zipeng [1 ,2 ,3 ]
Mak, Timothy Shin Heng [3 ,4 ]
Sham, Pak Chung [1 ,2 ,3 ]
机构
[1] Univ Hong Kong, Li Ka Shing Fac Med, Dept Psychiat, Hong Kong, Peoples R China
[2] Univ Hong Kong, State Key Lab Brain & Cognit Sci, Hong Kong, Peoples R China
[3] Univ Hong Kong, Li Ka Shing Fac Med, Ctr Panor Sci, Pok Fu Lam, Hong Kong, Peoples R China
[4] Fano Labs, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
GWAS; polygenic model; power calculation; online tool; statistical method; RISK; HERITABILITY; REGRESSION; INSIGHTS; LINKAGE; SCORES;
D O I
10.3389/fgene.2022.989639
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Power calculation is a necessary step when planning genome-wide association studies (GWAS) to ensure meaningful findings. Statistical power of GWAS depends on the genetic architecture of phenotype, sample size, and study design. While several computer programs have been developed to perform power calculation for single SNP association testing, it might be more appropriate for GWAS power calculation to address the probability of detecting any number of associated SNPs. In this paper, we derive the statistical power distribution across causal SNPs under the assumption of a point-normal effect size distribution. We demonstrate how key outcome indices of GWAS are related to the genetic architecture (heritability and polygenicity) of the phenotype through the power distribution. We also provide a fast, flexible and interactive power calculation tool which generates predictions for key GWAS outcomes including the number of independent significant SNPs, the phenotypic variance explained by these SNPs, and the predictive accuracy of resulting polygenic scores. These results could also be used to explore the future behaviour of GWAS as sample sizes increase further. Moreover, we present results from simulation studies to validate our derivation and evaluate the agreement between our predictions and reported GWAS results.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Power versus phenotyping precision of genome-wide association studies on sleep traits
    Oexle, Konrad
    SLEEP, 2018, 41 (11)
  • [42] GENOME-WIDE ASSOCIATION STUDIES AND POLYGENIC SCORE ANALYSES OF SUICIDE ATTEMPT IN MOOD DISORDERS
    Mullins, Niamh
    Power, Robert
    Lewis, Cathryn
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2017, 27 : S147 - S147
  • [43] Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies
    Sohail, Mashaal
    Maier, Robert M.
    Ganna, Andrea
    Bloemendal, Alex
    Martin, Alicia R.
    Turchin, Michael C.
    Chiang, Charleston W. K.
    Hirschhorn, Joel
    Daly, Mark J.
    Patterson, Nick
    Neale, Benjamin
    Mathieson, Iain
    Reich, David
    Sunyaev, Shamil R.
    ELIFE, 2019, 8
  • [44] Genome-wide association studies identify polygenic effects for completed suicide in the Japanese population
    Ikuo Otsuka
    Masato Akiyama
    Osamu Shirakawa
    Satoshi Okazaki
    Yukihide Momozawa
    Yoichiro Kamatani
    Takeshi Izumi
    Shusuke Numata
    Motonori Takahashi
    Shuken Boku
    Ichiro Sora
    Ken Yamamoto
    Yasuhiro Ueno
    Tatsushi Toda
    Michiaki Kubo
    Akitoyo Hishimoto
    Neuropsychopharmacology, 2019, 44 : 2119 - 2124
  • [45] Statistical power in genome-wide association studies and quantitative trait locus mapping
    Meiyue Wang
    Shizhong Xu
    Heredity, 2019, 123 : 287 - 306
  • [46] Statistical power in genome-wide association studies and quantitative trait locus mapping
    Wang, Meiyue
    Xu, Shizhong
    HEREDITY, 2019, 123 (03) : 287 - 306
  • [47] Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder
    de Moor, Marleen H. M.
    van den Berg, Stephanie M.
    Verweij, Karin J. H.
    Krueger, Robert F.
    Luciano, Michelle
    Vasquez, Alejandro Arias
    Matteson, Lindsay K.
    Derringer, Jaime
    Esko, Tonu
    Amin, Najaf
    Gordon, Scott D.
    Hansell, Narelle K.
    Hart, Amy B.
    Seppala, Ilkka
    Huffman, Jennifer E.
    Konte, Bettina
    Lahti, Jari
    Lee, Minyoung
    Miller, Mike
    Nutile, Teresa
    Tanaka, Toshiko
    Teumer, Alexander
    Viktorin, Alexander
    Wedenoja, Juho
    Abecasis, Goncalo R.
    Adkins, Daniel E.
    Agrawal, Arpana
    Allik, Jueri
    Appel, Katja
    Bigdeli, Timothy B.
    Busonero, Fabio
    Campbell, Harry
    Costa, Paul T.
    Smith, George Davey
    Davies, Gail
    de Wit, Harriet
    Ding, Jun
    Engelhardt, Barbara E.
    Eriksson, Johan G.
    Fedko, Iryna O.
    Ferrucci, Luigi
    Franke, Barbara
    Giegling, Ina
    Grucza, Richard
    Hartmann, Annette M.
    Heath, Andrew C.
    Heinonen, Kati
    Henders, Anjali K.
    Homuth, Georg
    Hottenga, Jouke-Jan
    JAMA PSYCHIATRY, 2015, 72 (07) : 642 - 650
  • [48] Improving the Accuracy of Whole Genome Prediction for Complex Traits Using the Results of Genome Wide Association Studies
    Zhang, Zhe
    Ober, Ulrike
    Erbe, Malena
    Zhang, Hao
    Gao, Ning
    He, Jinlong
    Li, Jiaqi
    Simianer, Henner
    PLOS ONE, 2014, 9 (03):
  • [49] The Genome-Wide Association Study—A New Era for Common Polygenic Disorders
    Robert Roberts
    George A. Wells
    Alexandre F. R. Stewart
    Sonny Dandona
    Li Chen
    Journal of Cardiovascular Translational Research, 2010, 3 : 173 - 182
  • [50] Integration of polygenic and individual SNP effects in genome-wide association analyses
    Serao, N. V. L.
    Beever, J. E.
    Faulkner, D. B.
    Rodriguez-Zas, S. L.
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, 2011, : 985 - 987