POLYMER-INORGANIC MATERIALS ON THE BASIS OF TETRAETHOXYSILANE

被引:0
|
作者
Yevchuk, I. Yu [1 ]
Demchyna, O. I. [1 ]
Kochubey, V. V. [2 ]
Romaniuk, H. V. [2 ]
Koval', Z. M. [2 ]
Zaikov, G. E. [3 ]
Medvedevskikh, Yu G. [1 ]
机构
[1] NAS Ukraine, Dept Physicochem Combustible Minerals, LM Lytvynenko Inst Physicoorgan Chem & Coal Chem, 3A Naukova St, UA-79059 Lvov, Ukraine
[2] Lviv Polytech Natl Univ, UA-79013 Lvov, Ukraine
[3] Russian Acad Sci, NM Emanuel Inst Biochem Phys, Moscow 119334, Russia
来源
OXIDATION COMMUNICATIONS | 2013年 / 36卷 / 03期
关键词
polymer-inorganic nanocomposite; sol gel processing; tetraethoxysilane; poly(vinylidene fluoride); photoinitiated polymerisation; impedance spectrometry;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The paper is concerned with consideration of preparing of tetraethoxysilane-based organic-inorganic composites using sol gel method. Two approaches are used: synthesis of organic-inorganic materials via sol gel process in polymeric matrix of poly(vinylidene fluoride), and during photoinitiated polymerisation of diacrylate polymerising composition in the presence of sol gel system. The kinetic parameters of the process of photoinitiated polymerisation of diacrylate composition were determined depending on gelation time, composition of polymerising system and concentration of sol gel process catalyst as well. Complex thermogravimetric and differential-thermal analysis of polymer-inorganic material was carried out to define its thermal characteristics. Proton conductivity of obtained materials was evaluated by impedance spectrometry.
引用
收藏
页码:801 / 810
页数:10
相关论文
共 50 条
  • [31] Shape Memory Polymer-Inorganic Hybrid Nanocomposites
    Reit, Radu
    Lund, Benjamin
    Voit, Walter
    ORGANIC-INORGANIC HYBRID NANOMATERIALS, 2015, 267 : 313 - 350
  • [32] Bio-inspired synthesis of polymer-inorganic nanocomposite materials in mild aqueous systems
    Sugawara-Narutaki, Ayae
    POLYMER JOURNAL, 2013, 45 (03) : 269 - 276
  • [33] Analysis of the structure of polymer-inorganic nanoparticles in solutions
    Yevlampieva N.P.
    Antipov M.Y.
    Ryumtsev E.I.
    Nanotechnologies in Russia, 2014, 9 (05): : 261 - 268
  • [35] Bulk Synthesis of Polymer-Inorganic Colloidal Clusters
    Perro, Adeline
    Manoharan, Vinothan N.
    LANGMUIR, 2010, 26 (24) : 18669 - 18675
  • [36] Polymer-inorganic nanocomposite membranes for gas separation
    Cong, Hailin
    Radosz, Maciej
    Towler, Brian Francis
    Shen, Youqing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2007, 55 (03) : 281 - 291
  • [37] Polymer-Inorganic Composites with Dynamic Covalent Mechanochromophore
    Kosuge, Takahiro
    Imato, Keiichi
    Goseki, Raita
    Otsuka, Hideyuki
    MACROMOLECULES, 2016, 49 (16) : 5903 - 5911
  • [38] Polymer-inorganic composite with ultradisperse gadolinium particles
    Aleksandrov, I. A.
    Metlenkova, I. Yu.
    Abramchuk, S. S.
    Solodovnikov, S. P.
    Khodak, A. A.
    Zezin, S. B.
    Aleksandrov, A. I.
    TECHNICAL PHYSICS, 2013, 58 (03) : 375 - 379
  • [39] Janus Cages of Bilayered Polymer-Inorganic Composites
    Chen, Ying
    Yang, Haili
    Zhang, Chengliang
    Wang, Qian
    Qu, Xiaozhong
    Li, Jiaoli
    Liang, Fuxin
    Yang, Zhenzhong
    MACROMOLECULES, 2013, 46 (10) : 4126 - 4130
  • [40] Dual-functional crosslinked polymer-inorganic materials for robust electrochemical performance and antibacterial activity
    Al Zoubi, Wail
    Kim, Min Jun
    Kim, Yang Gon
    Ko, Young Gun
    CHEMICAL ENGINEERING JOURNAL, 2020, 392