Succinct Summing over Sliding Windows

被引:1
|
作者
Ben Basat, Ran [1 ]
Einziger, Gil [2 ]
Friedman, Roy [1 ]
Kassner, Yaron [1 ]
机构
[1] Technion, Dept Comp Sci, Haifa, Israel
[2] Nokia Bell Labbs, Atir Yeda 16, Kefar Sava, Israel
关键词
Basic summing; Counting; Sliding window; Approximate counting; Additive approximation;
D O I
10.1007/s00453-018-0524-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper considers the problem of estimating the sum the last W elements of a stream of integers in {0, 1, ... , R}. Specifically, we study the memory requirements for computing a RW epsilon-additive approximation for the window's sum. We derive a lower bound of W log left perpendicular1/2W epsilon + 1right perpendicular bits when epsilon <= 1/2W and show a matching succinct algorithm that uses (1 + o(1)) (W log left perpendicular1/2W epsilon + 1right perpendicular bits. Next, we prove a (1 - o(1))epsilon(-1)/2 bits lower bound when epsilon = omega (W-1) <^> epsilon = o(log(-1) W) and provide a succinct algorithm that requires (1 + o(1))epsilon(-1)/2 bits. We show that when epsilon = Omega (log(-1) W) any solution to the problem must consume at least (1 - o(1)) . (epsilon(-1)/2 + log W) bits, while our algorithm needs (1 + o(1)) . (epsilon(-1)/2 + 2 log W) bits. Finally, we show that our lower bounds generalize to randomized algorithms as well, while our algorithms are deterministic and can process elements and answer queries in O(1) worst-case time.
引用
收藏
页码:2072 / 2091
页数:20
相关论文
共 50 条
  • [21] Maintaining stream statistics over multiscale sliding windows
    Jiao, Yishan
    [J]. ACM TRANSACTIONS ON DATABASE SYSTEMS, 2006, 31 (04): : 1305 - 1334
  • [22] A Lightweight Algorithm for Traffic Filtering over Sliding Windows
    Sanjuas-Cuxart, Josep
    Barlet-Ros, Pere
    Sole-Pareta, Josep
    Andriuzzi, Gabriella
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2012,
  • [23] Clustering on Uncertain Data Stream over Sliding Windows
    Tu, Li
    [J]. 2015 THIRD INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, 2015, : 148 - 152
  • [24] Designing Probabilistic Flow Counting over Sliding Windows
    Cornacchia, Alessandro
    Bianchi, Giuseppe
    Bianco, Andrea
    Giaccone, Paolo
    [J]. 2022 IEEE 11TH IFIP INTERNATIONAL CONFERENCE ON PERFORMANCE EVALUATION AND MODELING IN WIRELESS AND WIRED NETWORKS (PEMWN), 2022,
  • [25] Efficient Incremental Computation of Aggregations over Sliding Windows
    Zhang, Chao
    Akbarinia, Reza
    Toumani, Farouk
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2136 - 2144
  • [26] Efficient Representative Subset Selection over Sliding Windows
    Wang, Yanhao
    Li, Yuchen
    Tan, Kian-Lee
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (07) : 1327 - 1340
  • [27] Sketching asynchronous data streams over sliding windows
    Xu, Bojian
    Tirthapura, Srikanta
    Busch, Costas
    [J]. DISTRIBUTED COMPUTING, 2008, 20 (05) : 359 - 374
  • [28] Dynamic adjustment of sliding windows over data streams
    Zhang, DD
    Li, JZ
    Zhang, ZG
    Wang, WP
    Guo, LJ
    [J]. ADVANCES IN WEB-AGE INFORMATION MANAGEMENT: PROCEEDINGS, 2004, 3129 : 24 - 33
  • [29] Sketching asynchronous data streams over sliding windows
    Bojian Xu
    Srikanta Tirthapura
    Costas Busch
    [J]. Distributed Computing, 2008, 20 : 359 - 374
  • [30] Efficiently Summarizing Data Streams over Sliding Windows
    Rivetti, Nicolo
    Busnel, Yann
    Mostefaoui, Achour
    [J]. 2015 IEEE 14th International Symposium on Network Computing and Applications (NCA), 2015, : 151 - 158