Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer

被引:39
|
作者
Dong, Hongyu [1 ,2 ,3 ]
Zhang, Yijia [1 ,2 ,3 ]
Zhang, Shiquan [1 ,2 ,3 ]
Tang, Panpan [1 ,2 ,3 ]
Xiao, Xinglu [1 ,2 ,3 ]
Ma, Mengyue [3 ,4 ]
Zhang, Huishuang [1 ,2 ,3 ]
Yin, Yanhong [1 ,2 ,3 ]
Wang, Dong [1 ,2 ]
Yang, Shuting [1 ,2 ,3 ]
机构
[1] Henan Normal Univ, Coll Chem & Chem Engn, Construct East Rd, Xinxiang 453007, Henan, Peoples R China
[2] Henan Normal Univ, Natl & Local Engn Lab Motive Power & Key Mat, Construct East Rd, Xinxiang 453007, Henan, Peoples R China
[3] Henan Normal Univ, Collaborat Innovat Ctr Henan Prov Motive Power &, Construct East Rd, Xinxiang 453007, Henan, Peoples R China
[4] Henan Normal Univ, Henan Battery Res Inst, Construct East Rd, Xinxiang 453007, Henan, Peoples R China
来源
ACS OMEGA | 2019年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
SOLID-ELECTROLYTE INTERFACE; ELECTROCHEMICAL-BEHAVIOR; CYCLING STABILITY; RATE CAPABILITY; LI; CAPACITY; ENERGY; LIMN1.5NI0.5O4; CHALLENGES; DEPOSITION;
D O I
10.1021/acsomega.8b02571
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The composite cathode material of the conductive polymer polyaniline (PANI)-coated spinel structural LiNi0.5Mn1.5O4 (LNMO) for high-voltage lithium-ion batteries has been successfully synthesized by an in situ chemical oxidation polymerization method. The electrode of the LNMO-PANI composite material shows superior rate capability and excellent cycling stability. A capacity of 123.4 mAh g(-1) with the capacity retention of 99.7% can be maintained at 0.5C after 200 cycles in the voltage range of 3.0-4.95 V (vs Li/Li+) at room temperature. Even with cycling at 5C, a capacity of 65.5 mAh g(-1) can still be achieved. The PANI coating layer can not only reduce the dissolution of Ni and Mn from the LNMO cubic framework into the electrolyte during cycling, but also significantly improve the undesirable interfacial reactions between the cathode and electrolyte, and markedly increase the electrical conductivity of the electrode. At 55 degrees C, the LNMO-PANI composite material exhibits more superior cyclic performance than pristine, that is, the capacity retention of 94.5% at 0.5C after 100 cycles vs that of 13.0%. This study offers an effective strategy for suppressing the decomposition of an electrolyte under the highly oxidizing (> 4.5 V) and elevated temperature conditions.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
  • [21] Hydrothermal synthesis of LiNi0.5Mn1.5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries
    Cheng, Jianliang
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    CERAMICS INTERNATIONAL, 2016, 42 (02) : 3715 - 3719
  • [22] Stabilizing cathode-electrolyte interphase of LiNi0.5Mn1.5O4 high-voltage spinel by blending garnet solid electrolyte in lithium-ion batteries
    Jiao, Xinwei
    Rao, Lalith
    Yap, Junwei
    Yu, Chan-Yeop
    Kim, Jung-Hyun
    JOURNAL OF POWER SOURCES, 2023, 561
  • [23] Investigation the improvement of high voltage spinel LiNi0.5Mn1.5O4 cathode material by anneal process for lithium ion batteries
    Gao, Chao
    Liu, Haiping
    Bi, Sifu
    Li, Huilin
    Ma, Chengshuai
    GREEN ENERGY & ENVIRONMENT, 2021, 6 (01) : 114 - 123
  • [24] Investigation the improvement of high voltage spinel LiNi0.5Mn1.5O4 cathode material by anneal process for lithium ion batteries
    Chao Gao
    Haiping Liu
    Sifu Bi
    Huilin Li
    Chengshuai Ma
    Green Energy & Environment, 2021, 6 (01) : 114 - 123
  • [25] A superior Li2SiO3-Composited LiNi0.5Mn1.5O4 Cathode for High-Voltage and High-Performance Lithium-ion Batteries
    Deng, Yunlong
    Mou, Jirong
    Wu, Huali
    Jiang, Na
    Zheng, Qiaoji
    Lam, Kwok Ho
    Xu, Chenggang
    Lin, Dunmin
    ELECTROCHIMICA ACTA, 2017, 235 : 19 - 31
  • [26] Ordered spinel LiNi0.5Mn1.5O4 nanorods for high-rate lithium-ion batteries
    Yang, Jingang
    Zhang, Xiaolong
    Zhu, Zhiqiang
    Cheng, Fangyi
    Chen, Jun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 688 : 113 - 117
  • [27] Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode
    Pang, Wei Kong
    Lu, Cheng-Zhang
    Liu, Chia-Erh
    Peterson, Vanessa K.
    Lin, Hsiu-Fen
    Liao, Shih-Chieh
    Chen, Jin-Ming
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (26) : 17183 - 17189
  • [28] Surface-segregated, high-voltage spinel lithium-ion battery cathode material LiNi0.5Mn1.5O4 cathodes by aluminium doping with improved high-rate cyclability
    Luo, Ying
    Lu, Taolin
    Zhang, Yixiao
    Yan, Liqin
    Mao, Samuel S.
    Xie, Jingying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 703 : 289 - 297
  • [29] Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries
    Zhang, Minghao
    Wang, Jun
    Xia, Yonggao
    Liu, Zhaoping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 518 : 68 - 73
  • [30] Influence of the Annealing Temperature to the Properties of LiNi0.5Mn1.5O4 High Voltage Spinel Cathode for Li-Ion Batteries
    Kazda, T.
    Vondrak, J.
    Sedlarikova, M.
    Tichy, J.
    Cudek, P.
    17TH INTERNATIONAL CONFERENCE ON ADVANCED BATTERIES, ACCUMULATORS AND FUEL CELLS (ABAF 2016), 2016, 74 (01): : 199 - 204