Quantitative stability estimates for Fokker-Planck equations

被引:6
|
作者
Li, Huaiqian [1 ]
Luo, Dejun [2 ,3 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Random Complex Struct & Data Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fokker-Planck equation; Stability estimate; Kantorovich-Rubinstein distance; Superposition principle; DIFFERENTIAL-EQUATIONS; SOBOLEV DIFFUSION; TRANSPORT-EQUATION; WELL-POSEDNESS; CAUCHY-PROBLEM; SDES; UNIQUENESS; DEGENERATE; EXISTENCE; DRIFT;
D O I
10.1016/j.matpur.2018.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive quantitative stability estimates for solutions of Fokker-Planck equations with irregular coefficients. We are mainly concerned with two different situations: in the degenerate case, the coefficients are assumed to be weakly differentiable, while in the non-degenerate case the drift coefficient satisfies only the Ladyzhenskaya- Prodi-Serrin condition. Our method is based on Trevisan's superposition principle, which represents the solution to the Fokker-Planck equation as the marginal distribution of the martingale solution of the associated stochastic differential equation. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:125 / 163
页数:39
相关论文
共 50 条
  • [21] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [22] Deformed multivariable fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [23] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [24] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [25] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &
  • [26] Quantitative particle approximation of nonlinear Fokker-Planck equations with singular kernel
    Olivera, Christian
    Richard, Alexandre
    Tomasevic, Milica
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) : 691 - 749
  • [27] Potential stability of the Fokker-Planck equation
    Lyu, Ming-Jiea
    Tsai, Dong-Ho
    Wu, Kuang-Yu
    Wu, Kung-Chien
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (02)
  • [28] On the stability of integrables Fokker-Planck fields
    Quintero, R.
    Guinez, J.
    Rueda, A.
    REVISTA TECNICA DE LA FACULTAD DE INGENIERIA UNIVERSIDAD DEL ZULIA, 2007, 30 : 321 - 325
  • [29] Existence, Stability and Regularity of Periodic Solutions for Nonlinear Fokker-Planck Equations
    Lucon, Eric
    Poquet, Christophe
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (01) : 633 - 671
  • [30] Stability analysis of mean field models described by Fokker-Planck equations
    Frank, TD
    ANNALEN DER PHYSIK, 2002, 11 (10-11) : 707 - 716