Traversal Languages Capturing Isomorphism Classes of Sierpinski Gaskets

被引:0
|
作者
Jonoska, Natasa [1 ]
Krajcevski, Mile [1 ]
McColm, Gregory [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
SUBSTITUTION TILINGS; DNA ORIGAMI; HANOI; NANOSTRUCTURES; TOWERS;
D O I
10.1007/978-3-319-41312-9_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider recursive structural assembly using regular simplexes such that a structure at every level is obtained by joining d + 1 structures from a previous level. The resulting structures are similar to the Sierpinski gasket. We use intersection graphs and index sequences to describe these structures. We observe that for each d > 1 there are uncountably many isomorphism classes of these structures. Traversal languages that consist of labels of walks that start at a given vertex can be associated with these structures, and we find that these traversal languages capture the isomorphism classes of the structures.
引用
收藏
页码:155 / 167
页数:13
相关论文
共 50 条
  • [1] ON THE PROPAGATOR OF SIERPINSKI GASKETS
    KLAFTER, J
    ZUMOFEN, G
    BLUMEN, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20): : 4835 - 4842
  • [2] Geodesic interpolation on Sierpinski gaskets
    Davis, Caitlin M.
    LeGare, Laura A.
    McCartan, Cory W.
    Rogers, Luke
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (02) : 117 - 152
  • [3] Resistance of random Sierpinski gaskets
    Fontaine, Daniel
    Smith, Thomas
    Teplyaev, Alexander
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 121 - +
  • [4] QUANTUM WALKS ON SIERPINSKI GASKETS
    Lara, Pedro Carlos S.
    Portugal, Renato
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2013, 11 (08)
  • [5] SINGULAR INTEGRALS ON SIERPINSKI GASKETS
    Chousionis, Vasilis
    PUBLICACIONS MATEMATIQUES, 2009, 53 (01) : 245 - 256
  • [6] Reversible Programming Languages Capturing Complexity Classes
    Kristiansen, Lars
    REVERSIBLE COMPUTATION (RC 2020), 2020, 12227 : 111 - 127
  • [7] SPECTRAL DIMENSION OF ELASTIC SIERPINSKI GASKETS
    LIU, SH
    PHYSICAL REVIEW B, 1984, 30 (07): : 4045 - 4047
  • [8] Electrical circuits on mesoscopic Sierpinski gaskets
    Burioni, R
    Cassi, D
    Neri, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (37): : 8823 - 8833
  • [9] Harmonic Oscillators on Infinite Sierpinski Gaskets
    Edward Fan
    Zuhair Khandker
    Robert S. Strichartz
    Communications in Mathematical Physics, 2009, 287 : 351 - 382
  • [10] Spectral analysis on infinite Sierpinski gaskets
    Teplyaev, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) : 537 - 567