Quasi-Polynomial Algorithms for Submodular Tree Orienteering and Other Directed Network Design Problems

被引:0
|
作者
Ghuge, Rohan [1 ]
Nagarajan, Viswanath [1 ]
机构
[1] Univ Michigan, Ind & Operat Engn Dept, Ann Arbor, MI 48109 USA
关键词
APPROXIMATION ALGORITHMS; STEINER;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the following general network design problem on directed graphs. The input is an asymmetric metric (V, c), root r* is an element of V, monotone submodular function f : 2(V) -> R+ and budget B. The goal is to find an r*-rooted arborescence T of cost at most B that maximizes integral(T). Our main result is a very simple quasi-polynomial time O(log k/log log k) approximation algorithm for this problem, where k <= vertical bar V vertical bar is the number of vertices in an optimal solution. To the best of our knowledge, this is the first non-trivial approximation ratio for this problem. As a consequence we obtain an O(log(2) k/log log k) approximation algorithm for directed log log k (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved O(log(2) k/log log k)-approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio [15], but improves significantly on the running time: our algorithm takes n(O)(log(1)(+epsilon k)) time whereas the previous algorithm required n(O)(log(5) k) time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first non-trivial approximation ratio. Under certain complexity assumptions, our approximation ratios are best possible (up to constant factors).
引用
收藏
页码:1039 / 1048
页数:10
相关论文
共 50 条