A new Abb theorem in normed vector spaces

被引:10
|
作者
Göpfert, A
Tammer, C [1 ]
Zalinescu, C
机构
[1] Univ Halle Wittenberg, FB Math & Informat, D-06099 Halle An Der Saale, Germany
[2] Alexandru Ioan Cuza Univ, Fac Math, Iasi 6600, Romania
关键词
maximal point; properly efficient point; Henig efficient point; density results; asymptotic cone; asymptotically compact set;
D O I
10.1080/02331930412331282427
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We extend the Arrow, Barankin and Blackwell (ABB) theorem for Henig efficient points for nonconvex sets in normed vector spaces. The novelty of our result is especially represented by the fact that we do not assume compactness of the set; in fact it can be an unbounded asymptotically compact set. Our result subsumes several generalizations of this important theorem.
引用
收藏
页码:369 / 376
页数:8
相关论文
共 50 条
  • [21] NORMED SPACES WHICH SATISFY APOLLONIUS THEOREM
    DANELICH, IA
    MATHEMATICAL NOTES, 1976, 20 (1-2) : 696 - 699
  • [22] DVORETZKY THEOREM FOR QUASI-NORMED SPACES
    GORDON, Y
    LEWIS, DR
    ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (02) : 250 - 259
  • [23] The Uniform Boundedness Theorem in Asymmetric Normed Spaces
    Alegre, C.
    Romaguera, S.
    Veeramani, P.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [24] k-Normed topological vector spaces
    S. V. Lyudkovskiî
    Siberian Mathematical Journal, 2000, 41 : 141 - 154
  • [25] GENERALIZED INVERSES ON NORMED VECTOR-SPACES
    FLORESDECHELA, D
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 26 (AUG) : 243 - 263
  • [26] The Quasiconvexity of Quasigeodesics in Real Normed Vector Spaces
    M. Huang
    S. Ponnusamy
    X. Wang
    Results in Mathematics, 2010, 57 : 239 - 256
  • [27] M-fuzzifying normed vector spaces
    Wang, Yongchao
    Shi, Fu-Gui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [28] Duality of κ-normed topological vector spaces and their applications
    Ludkovsky S.V.
    Journal of Mathematical Sciences, 2009, 157 (2) : 367 - 385
  • [29] The Quasiconvexity of Quasigeodesics in Real Normed Vector Spaces
    Huang, M.
    Ponnusamy, S.
    Wang, X.
    RESULTS IN MATHEMATICS, 2010, 57 (3-4) : 239 - 256
  • [30] On Wigner's theorem in strictly convex normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 97 (3-4): : 393 - 401